
API Guide
version 11.9

ATOM API Guide

Table Of Contents

About This Guide 4

Intended Audience 4

Support 4

Understanding ATOM APIs 5

Introduction 5

ATOM Architecture 5

ATOM Data Model 6

API Entities 6

API Objects 7

Schema Path 7

Instance path 7

Object Representations 7

API Methods 8

URL Encodings 8

Response codes 8

Authentication 9

New Client 11

Multi Tenancy in ATOM 11

When Multi Tenancy is disabled 12

Single Tenant under ‘system’ 12

ATOM Deployment with Multiple Tenants but no Sub tenancy 13

ATOM Deployment with Multiple Tenants And Sub tenancy 13

Transactions Support in ATOM 13

Setting the transaction control options 16

Understanding the Task States 17

Handling Transaction Failures 18

Using Query Parameters 19

Fields Query Parameter 20

Depth Query Parameter 20

Pagination in APIs 21

Using the Limit parameter 21

2

ATOM API Guide

Using the Offset parameter 21

Invoking ATOM APIs from REST Client 22

Introduction 22

Constructing the API Request 22

Generating the X-TASK-ID 23

Generating the Payload 25

Examples of ATOM APIs 25

Adding a Credential Set 25

Onboarding a device to ATOM 26

Creating a vrf entry on the device 27

Creating the Service 27

Webhook API Support 28

Tools for API Development and Testing 28

Schema Browser 28

Swagger 29

Scenarios 29

Notifications Support In ATOM 30

Notification Type And Detail 30

Notification Type, Payload Schema Information 32

SSE (Server Sent Events) Support 33

Fetching Stream Information 33

Sample Output 33

List of Streams (for a quick glance) 34

Sample SSE Session 34

Sample SSE Python code 34

ATOM Change Log Reactions 38

ATOM System Health & Availability 39

Notifications 40

Polling 41

HTTP Probe 41

SNMP 41

Supported MIBs: 42

SYSTEM-MIB 42

3

ATOM API Guide

About This Guide
ATOM is a Restconf and YANG server from a Northbound Integration point of view.

Configuring/Customizing ATOM is largely achieved by using Restconf APIs against ATOM

platform Yang models, Service Models and device models.

Knowledge of YANG and Restconf are required to work with ATOM APIs.

ATOM implements (largely) the following versions

● RESTCONF: https://tools.ietf.org/html/rfc8040

● YANG 1.1: https://tools.ietf.org/html/rfc7950

There are two ways customers can integrate with ATOM.

1. Using YANG and ATOM APIs

2. Using Python SDK for Services And Device models development against ATOM APIs.

This document presents a high level view of ATOM APIs. Each Subsystem of ATOM, such as,

Services Development, Device Driver Development, Workflows, Monitoring/Telemetry etc come

with their individual detailed documentation.

Intended Audience
This document is meant to be used by the system integrators, IT administrators, and developers

who want to develop client applications using ATOM.

Support
If you are facing any issues while using the ATOM APIs, please send a mail at

support@anutanetworks.com or raise a ticket on the Support site.

1

4

https://tools.ietf.org/html/rfc8040
https://tools.ietf.org/html/rfc7950

ATOM API Guide

Understanding ATOM APIs

Introduction
ATOM enables customers and partners to develop their own device, service and operational

models for specific network service delivery needs. ATOM API implements a RESTful HTTP

workflow, using HTTPS Requests to the server and retrieving the information they need from

the server’s Responses. Any client application that can send HTTP Requests over a secure

channel using SSL through the port number 443 is an appropriate tool for developing RESTful

applications with the ATOM API. The RESTCONF protocol operates on a conceptual data store

defined with the YANG data modeling language. The server lists each YANG module it supports

using a structure based on the YANG module capability URI format.

The conceptual data store contents, data-model-specific operations, and notification events are

identified by this set of YANG module resources. All RESTCONF content identified as either a

data resource, operation resource, or event stream resource is defined in YANG.

ATOM Architecture
ATOM’s model-driven, layered, and abstraction approach helps in delivering vendor-neutral,

extensible, and maintainable services.

For developing new services or device plugins customers can use ATOM Python SDK. Below

snippet shows API interactions happening at different levels.

4

5

ATOM API Guide

ATOM Data Model
ATOM platform configuration is largely captured as YANG models. Tasks, Scheduling, Users,

tenants, Services, Device models, Monitoring Infra, Actions, RBAC rules, Device Compliance

Rules, Events, Notifications and so on are some of the concepts modeled with YANG 1.1.

With this arrangement coupled with Restconf as the public API it is relatively easy for customers

to understand how to integrate with ATOM. The yang models can be downloaded from the

server. ATOM UI also gives a schema browser and has Swagger integration to help navigate

these models.

● Device and Service Models

ATOM contains an abstract device model and numerous vendor devices are already

mapped to this abstract model. More vendor device support can be added by supplying

the relevant device package. A device package can be developed using ATOM Python

SDK.

If the device supports YANG models (native or Openconfig) ATOM can use those models

instead of its abstract model.

It is also possible to bypass the YANG model layer and use the device native cli or REST

API directly.

In addition to the device models, popular services such as L2VPN, L3VPN, Routing, ACLs

etc. are available out-of-the-box.

● Customized Operations

Using ATOM Data Model, the administrator can define highly customized operations that

will be executed on a multi-vendor install base. Any network configuration task can be

defined as an operation. Operations can be executed via API or UI with ease.

● Transaction support with commit/rollback

ATOM supports transactional operations both on the model itself as well as the devices.

ATOM supports a candidate configuration concept using which customers can stage their

datastore(device configuration) changes until ready to commit. Upon commit, the staged

changes will be merged to the running configuration datastore and devices are

configured.6

API Entities
The API model includes these programmatic entities:

● API Objects

● API Methods

6

ATOM API Guide

API Objects
API objects represent the ATOM entities that are modeled in YANG. Programmatic access is

determined by the user permissions and access settings (which are configured by your

organization’s system administrator). Most of the objects accessible through the API are

read-write objects. However, there are a few objects that are read-only. To access the API

objects, download the latest SDK containing all the objects and models expressed in YANG.

Schema Path

The schema path leads you to identify a specific target in the Data Model tree and contains the

following attributes:

● A parent object

● Relative name that uniquely identifies the object among its siblings

● Schema path name that uniquely identifies the object globally

Example

/controller:credentials/credential-sets/credential-set

Instance path

The relative path identifies an object from its siblings within the context of its parent object.

Example

/controller:credentials/credential-sets/credential-set=XYZ

where XYZ is the name of a Credential Set

Object Representations

Clients must be able to send Requests and receive Responses from the objects by using either

the XML or JSON data serialization formats.

The format for both the Request and Response can be specified by adding an .xml or .json

extension to the Request URI or Content-Type header and the Accept header.

Format Content-Type header Accept header Extension

JSON application/json application/json,
application/yang-
data+json

.json

XML application/xml application/xml,
application/yang-
data+xml

.xml

7

ATOM API Guide

API Methods
ATOM supports the standard RESTCONF methods - PUT, PATCH, GET, POST, and DELETE. The

base URL RESTCONF based operations is https://<server-ip>/restconf

HTTP
Method

Operation
Type

Description

GET Retrieve Retrieves or lists the representation of an existing object

POST Create Create an object

PUT Update Modifies the existing object

PATCH Update Applies the delta instead of replacing the entire object

NOTE: ATOM supports only the plain “PATCH”method

DELETE Delete Deletes an existing object

URL Encodings

The target resource specified in a RESTCONF operation should adhere to the rules specified in

the specification. For knowing the rules needed to encode a key value, refer RESTCONF

documentation: https://tools.ietf.org/html/rfc8040#section-3.5.3

Response codes
HTTP Status Codes returned to the client in response to the request sent to the ATOM server.

Status Code Status Description

200 OK Successful

201 Created The request is valid. The requested object was created.

202 Accepted The request is valid and a task was created to handle it. Response
contains the task object which can be used to monitor the task progress.

204 No Content The request is valid and was completed. The response does not include a
body.

400 Bad Request The request body is malformed, incomplete, or otherwise Invalid.

401 Unauthorized An authorization header was expected but not found.

403 Forbidden The requesting user does not have adequate privileges to access one or
more objects specified in the request

8

https://tools.ietf.org/html/rfc8040#section-3.5.3

ATOM API Guide

404 Not Found One or more objects specified in the request could not be found in the
specified container

405
Method Not
Allowed

The HTTP method specified in the request is not supported for this
object.

406
Not Acceptable

The requested resource is only capable of generating content which is
not acceptable according to the Accept Headers sent in the request.

409 Conflict The requested object or resource is in conflict.

415
Unsupported
Media Type

The request entity has a media type which the server or resource does
not support.

500 Internal
Server Error

The request was received but could not be completed because of an
internal error at the server

Authentication

ATOM supports bearer token based authentication. You would need a client_id, client secret,

username and password to obtain a token. Your administrator can provide the client_secret by

logging to ATOM access manager at <ATOM_URL>/auth with admin credentials. Navigate to

Clients -> atom -> Credentials and copy the Secret. If a new client for API access is preferred,

follow the steps in New Client

Token is obtained by calling the REST API by setting client_secret obtained above, and your

username and password and extract the id_token from the output.

Example:

curl -L -k -X POST
'<ATOM_URL>/auth/realms/system/protocol/openid-connect/token' -H
'Content-Type: application/x-www-form-urlencoded' \
--data-urlencode 'grant_type=password' \
--data-urlencode 'scope=openid' \
--data-urlencode 'client_id=<CLIENT_ID>' \
--data-urlencode 'client_secret=<CLIENT_SECRET>' \
--data-urlencode 'username=<USERNAME>' \
--data-urlencode 'password=<PASSWORD'

Output:
{"access_token":"eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICJFY3RabXFUM
jZwYlU5dDdHcHh3ZWp6YV9KaENhV1V3S3hJRS1JSzVKX0RnIn0.eyJleHAiOjE2MTQzMDkyNjQsIml
hdCI6MTYxNDMwNTY2NCwianRpIjoiMTA0MGI0N2UtMzMwNi00ODc0LTlkNGEtNGU0NTNmYTQ3N2YwI
iwiaXNzIjoiaHR0cHM6Ly9hcHAuMTcyLjE2LjIyLjIwNy5uaXAuaW86MzI0NDMvYXV0aC9yZWFsbXM

9

ATOM API Guide

vc3lzdGVtIiwiYXVkIjoiYWNjb3VudCIsInN1YiI6Ijk4NmU5MDMyLTI0Y2YtNDdhOS1hMWY5LTFjN
zJiY2RjOGE5MiIsInR5cCI6IkJlYXJlciIsImF6cCI6ImFub3RoZXItY2xpZW50Iiwic2Vzc2lvbl9
zdGF0ZSI6Ijk3MDlhZjVhLWI0ZTYtNDYwNy1hNjZjLWRmMWJmZDE4NzcxYyIsImFjciI6IjEiLCJyZ
WFsbV9hY2Nlc3MiOnsicm9sZXMiOlsib2ZmbGluZV9hY2Nlc3MiLCJ1bWFfYXV0aG9yaXphdGlvbiJ
dfSwicmVzb3VyY2VfYWNjZXNzIjp7ImFjY291bnQiOnsicm9sZXMiOlsibWFuYWdlLWFjY291bnQiL
CJtYW5hZ2UtYWNjb3VudC1saW5rcyIsInZpZXctcHJvZmlsZSJdfX0sInNjb3BlIjoib3BlbmlkIHB
yb2ZpbGUgZW1haWwiLCJlbWFpbF92ZXJpZmllZCI6ZmFsc2UsInByZWZlcnJlZF91c2VybmFtZSI6I
mFkbWluIiwiZ2l2ZW5fbmFtZSI6IiIsImZhbWlseV9uYW1lIjoiIiwiZW1haWwiOiJhZG1pbkBhdG9
tLmxvY2FsIn0.Y6Y7HaF5-Wqr7MlK_Dh9MqZuWTMPjTJ7JNOGGc7teIJm0e2I3JXokXURbZlCpolEY
jdGV2Pw12l0Lj-G1l03_A--PhdzPRinrEf0wbX3JHk8DpIoe9vKykxTMi-PmEDkYzCIuGLTBx7GTom
buft8sJ2VJejs-uoTshWd6lAW289efRQXmn_bFQhAuM_dDKHxGBOZReapf6FhMo3qDSg2Rg4mvn7_R
7X7rYMy0ko0tFn4hNCsEx-U1cbA1roH-b3GAKe_IsNtW6aneaMqegrYpNYluYvMkuY_MDXz8eX9GHS
YKg50mdeVbgh3_EFHhXQ3hDQMRej3ataWIC0zC4u6AQ","expires_in":3600,"refresh_expire
s_in":1800,"refresh_token":"eyJhbGciOiJIUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6IC
JhMzhkNTc1YS0zYTg3LTQ5Y2YtYTcwOS0xOGFlYjcxZGViYmIifQ.eyJleHAiOjE2MTQzMDc0NjQsI
mlhdCI6MTYxNDMwNTY2NCwianRpIjoiMDVjYTVmMjItNThkZi00NzUwLWE2MGMtZDBmNDdmZDAyMmN
iIiwiaXNzIjoiaHR0cHM6Ly9hcHAuMTcyLjE2LjIyLjIwNy5uaXAuaW86MzI0NDMvYXV0aC9yZWFsb
XMvc3lzdGVtIiwiYXVkIjoiaHR0cHM6Ly9hcHAuMTcyLjE2LjIyLjIwNy5uaXAuaW86MzI0NDMvYXV
0aC9yZWFsbXMvc3lzdGVtIiwic3ViIjoiOTg2ZTkwMzItMjRjZi00N2E5LWExZjktMWM3MmJjZGM4Y
TkyIiwidHlwIjoiUmVmcmVzaCIsImF6cCI6ImFub3RoZXItY2xpZW50Iiwic2Vzc2lvbl9zdGF0ZSI
6Ijk3MDlhZjVhLWI0ZTYtNDYwNy1hNjZjLWRmMWJmZDE4NzcxYyIsInNjb3BlIjoib3BlbmlkIHByb
2ZpbGUgZW1haWwifQ.XZ4QnaKY_SRKxQdmQTN72PLiTX-g_Ppwmk7FCi9Aegk","token_type":"B
earer","id_token":"eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICJFY3Rab
XFUMjZwYlU5dDdHcHh3ZWp6YV9KaENhV1V3S3hJRS1JSzVKX0RnIn0.eyJleHAiOjE2MTQzMDkyN
jQsImlhdCI6MTYxNDMwNTY2NCwiYXV0aF90aW1lIjowLCJqdGkiOiI0YjUyODgxMS01OTMzLTRiY
2YtOGU3Yy03MWViYjc1MDQyYTEiLCJpc3MiOiJodHRwczovL2FwcC4xNzIuMTYuMjIuMjA3Lm5pc
C5pbzozMjQ0My9hdXRoL3JlYWxtcy9zeXN0ZW0iLCJhdWQiOiJhbm90aGVyLWNsaWVudCIsInN1Y
iI6Ijk4NmU5MDMyLTI0Y2YtNDdhOS1hMWY5LTFjNzJiY2RjOGE5MiIsInR5cCI6IklEIiwiYXpwI
joiYW5vdGhlci1jbGllbnQiLCJzZXNzaW9uX3N0YXRlIjoiOTcwOWFmNWEtYjRlNi00NjA3LWE2N
mMtZGYxYmZkMTg3NzFjIiwiYXRfaGFzaCI6IlJsV2Z1VVlCWWhsWXppc05IdTc3SmciLCJhY3IiO
iIxIiwiZW1haWxfdmVyaWZpZWQiOmZhbHNlLCJwcmVmZXJyZWRfdXNlcm5hbWUiOiJhZG1pbiIsI
mdpdmVuX25hbWUiOiIiLCJmYW1pbHlfbmFtZSI6IiIsImVtYWlsIjoiYWRtaW5AYXRvbS5sb2Nhb
CJ9.GZ9eYBaCtGesAGGvhZPBiEQ85Vtf6Ae3dP1tEVUUbZBKK_Su_B49TYO1Zw9_96hR91YHp1_4
xn-n1MEDrd54gHCtAmdZi4Woj9X9QUAWFLchQ0n2qVI0DdE4MXUTfnXopmVkGBxQSDSXoom8Fj9Q
iEBkmKM25xIFMDMGoXz75e3VXu8hHUDfCPFP2Tj5Y-oEC_s8pGbv7P7e5GLMpUG15F82_JE_VOUc
GN2BbTDolwchHD53mNRaJ2MwTIpsfQGtZkghCyulCXXgh-k7AE2jkS-BQVXB392DwgKNyDxONxdA
axNOB-wqBtNwwfXwU9sQGCh6sgo6dPr8rwroPoxvVw","not-before-policy":0,"session_st
ate":"9709af5a-b4e6-4607-a66c-df1bfd18771c","scope":"openid profile email"}

Extract the id_token from the above output.

Example:

$ export ID_TOKEN=<ID_TOKEN>

$ curl -L -k -X GET '<ATOM_URL>/restconf/data/tenants.json' -H
"Authorization: Bearer $ID_TOKEN"

{"controller:tenants":{"@":{"shared-with":"system.*"},"tenant":[{"@":{"shared-
with":"system.*"},"sub-tenancy-enabled":false,"name":"system","description":"s
ystem
tenant","dry-run":false},{"@":{"shared-with":"system.*"},"sub-tenancy-enabled"
:false,"name":"acme","dry-run":false},{"@":{"shared-with":"system.*"},"sub-ten
ancy-enabled":false,"name":"Coke","dry-run":false},{"@":{"shared-with":"system

10

ATOM API Guide

.*"},"sub-tenancy-enabled":false,"name":"Pepsi","dry-run":false}]}}

New Client

If a new client for API access is desired, follow these steps.

1. Login to the ATOM access manager using admin credentials at

https://<ATOM_UI_VIP>/auth/ (e.g:https://10.10.7.30/auth)

2. Navigate to Clients, export the client atom. It would download a file

3. Click on 'Create' on the same page (Clients) and import the previous downloaded file

4. Change the client name to appropriate name

5. Click Save, it should show the new Client page.

6. (Optional) Update 'Valid Redirect URLs' to the proper callback url.

7. Select 'Credentials' and note down the Secret, this is going to be client secret.

8. Edit the oauth2-proxy deployment file by ssh to master node

a. Execute kubectl edit deployment -n atom oauth2-proxy

b. Add https://<ATOM_UI_VIP>/auth=<client_name> (e.g:

https://10.10.7.30/auth=newclient) under

OAUTH2_PROXY_EXTRA_JWT_ISSUERS. If there are entries already, add the new

one after a comma without a space. (e.g:

https://10.10.7.30/auth=atom,https://10.10.7.30/auth=paragon-automation)

Multi Tenancy in ATOM
ATOM supports multi-tenancy by attaching the tenant owning an object as part of the overall

object key. There are 2 attributes attached to all objects:

1. Owner

2. shared-with

‘system’ is always the root tenant.

Sub Tenancy is also supported.

The immediate child tenants of ‘system’ are called top level tenants.

Data of one top level tenant is completely isolated from another top level tenant.

Data of ‘system’ can be shared with top level tenants.

If tenants want to share data with ‘system’, it is possible too.

A sample hierarchy can be:

system

Acme

North

11

ATOM API Guide

South

Campus-1

Company-2

Company-3

User guide has more details on Multi Tenancy Support in ATOM.

For the API interaction purposes, there is little change to the APIs to handle Multi Tenancy.

All APIs work the same when MT is enabled or not, for the most part. But, when sub tenants are
involved and sharing of resources is required, sometimes, a client has to clarify which ‘owner’ of
an object is being referenced. In those cases, the client program has to specify the ‘owner’ of
objects as part of the payload to the APIs.

Multi Tenancy Specifics can be explained with the help of following examples:

When Multi Tenancy is disabled
This is the case when a client deploys ATOM on-premise.

In this deployment client assumes ‘system’ as self.

All the data is owned by ‘system’ [which is ‘client’ itself].

In this case there is no difference between MT and non-MT flavors of the APIs.

The rest of this document mainly describes Non-MT APIs.

Single Tenant under ‘system’
System

Acme

This scenario can happen in two cases.

In ATOM saas, when a deployment is dedicated to one client (Acme in the above example).

Or, when Acme deploys on-prem, enables Multi Tenancy and creates a top level tenant ‘Acme’.

In this scenario, there can be data sharing between system and Acme, mostly from system to

Acme, to a lesser extent from Acme to system.

12

ATOM API Guide

ATOM Deployment with Multiple Tenants but no Sub
tenancy
System

Tenant-1

Tenant-2

This is the predominant style ATOM is deployed in SAAS.

But, a client can use this style in their on-prem too if they wish. Let us call this Customer SAAS,
for lack of a better term.

We need to understand an important difference between ATOM SAAS and Customer SAAS.

‘Anuta’ is synonymous with ‘system’ in ATOM SAAS and

Customer is synonymous with ‘system’ in Customer SAAS.

Anuta employees are system users in SAAS and would not have access to tenants data (barring a
few data categories). But, customers may be ok to let designated customer users see all the
tenants data in their deployment.

ATOM Deployment with Multiple Tenants And Sub
tenancy
In this scenario , due to sub tenancy and sharing, there is potential for duplicate data unless you
clarify which tenant data is being referenced. Whenever this clarity is to be provided it reflects
in the API payloads (that is where you specify which tenant data you mean to use).

Transactions Support in ATOM
ATOM RESTCONF implementation supports transactions on all the data mutations and remote

procedure calls (rpcs, actions). All the device operations of one transaction are done as one

logical atomic operation. Commit, rollback, and retry operations are supported.0

A sample transaction is illustrated below:

13

ATOM API Guide

-

1. A transaction is initiated by calling the 'begin-task' protocol operation which returns a

taskID.

2. All subsequent calls carry a header 'X-TASK-ID' with the above taskID.

3. When the client is ready to commit the transaction, it calls the 'commit-task' operation.

a. Progress of the task can be polled or notifications can be subscribed.

b. In case of any error, the commit can be retried by calling ‘commit-task’ again.

c. To rollback, the client calls ‘rollback-task’.

ATOM computes compensating commands for devices to which commands were

sent in the transaction previously and applies the compensating commands to

rollback. If any errors occur during the rollback, rollback can be retried calling

‘rollback-task’ again.

14

ATOM API Guide

d. If the rollback is unsuccessful, manual intervention may be required.

4. Clients can monitor the Task detail to learn the progress of provisioning including any

successful or failed device configuration attempts and commands.

Description Client Request Output Notes

1

A transaction is
started by
invoking
'begin-task' rpc

POST
/restconf/operations/
tasks:begin-task

<taskID>id</tas
kID>

Example
<taskID>6d
b7bfb2-930
f-4257-98a
7-7b01dd34
2e04</task
ID>

This taskID should be
used in all the
subsequent operations
that are required for this
transaction.

All the subsequent calls
should include a header.
X-TASK-ID = taskID

Example
X-TASK-ID =
6db7bfb2-930f-425
7-98a7-7b01dd342e
04

2 Create a VRF

POST
/controller:devices/d
evice=<device_id>

With header
X‐TASK‐ID =
6db7bfb2‐930f‐4257‐
98a7‐7b01dd342e04

Payload:
<vrf>
<name>pevrf</name>
<rd>100:1</rd>
</vrf>

Status:
HTTP/1.1
202 Accepted

<taskId>6d
b7bfb2-930
f-4257-98a
7-7b01dd34
2e04</task
Id>

3

Any additional
CRUD operations
Can be done
using the same
TASKId and the
header.

4
Commit the
transaction

POST
/restconf/operations/tasks:com
mit-task.xml
With Header

Status:
HTTP/1.1 202
Accepted
<taskId>6d

15

ATOM API Guide

X-TASK-ID =
6db7bfb2-930f-4257-98a7-7b01
dd342e04

b7bfb2-930
f-4257-98a
7-7b01dd34
2e04</task
Id>

5
Check the task
details or wait for
notification

POST

restconf/operations/t
asks:get-basic-task-d
etail.xml

Payload:
<taskId>6db7bfb2-930f
-4257-98a7-7b01dd342e
04</taskId>

Setting the transaction control options
Default transaction behavior is specified by the global transaction policy parameter and they

can be overridden by per transaction policy parameters. Following parameters are available for

clients to control the transaction behavior.

Option Type Description

do-not-send-commands-to-devices

boolean

Controls whether commands can be sent to the
device.

true: Commit the data to ATOM datastore only,
but no configuration changes will be applied on
the device. Useful for testing or in the case of a
brownfield environment to create services.

NOTE: This flag will be effective only if global
dry-run flag is set to false

validation-scope-type

1. COMMITTED_DATA
enum

Controls whether data validation scope is across
transactions. This flag is similar to isolation
control in traditional RDBS systems, but limited
to just data validation. Allowed values are
"COMMITTED_DATA" and
"UNCOMMITTED_DATA".

Validation will be done only using the committed
data. Current transaction will not see changes
done by other parallel transactions.

16

ATOM API Guide

2.UNCOMMITTED DATA This is the default selection.

Data validation will be done using the
uncommitted data. Current transaction will see
changes done by other parallel transactions. This
facility can be useful to assess the potential for
transaction success/failure (for example during
an approval process).

fail-fast boolean

flag to control if reference validation to be done
on each payload submission. false will defer the
validation until the commit-task call. This lets the
client submit payloads in an out of order
(reference wise).

command-sequence-policy enum

Controls whether the generated commands need
to be ordered according to the dependencies
specified in the model. Allowed values are
DEPENDENCY_BASED and NONE

Understanding the Task States
Each operation (create, delete or update) on any entity managed by ATOM generates a task in

ATOM.

A task can be in different states of progress and each state is described in the table below:

Task States % Completion Task Status Description

Yet to Begin 0% NOT_STARTED Execution not started

Running States 0% to 100% IN_PROGRESS

VALIDATED

RESOURCES_RESERVED

RESOURCES _PROVISIONED

OPERATIONAL_RESOURCES_RES
ERVED

Resources allocated for
service complete on ATOM

OPERATIONAL_RESOURCES_UN
RESERVED

Service allocated resources
are unreserved on ATOM

50% SCHEDULED_FOR_PROVISION Task is scheduled for
provisioning

17

ATOM API Guide

50% WAITING Task is waiting for approval to
provision configuration

END STATES

SUCCESS COMPLETE Operation completed
successfully

ERROR RESERVE_RESOURCES_FAILED

RESERVE_OPERATIONAL_RESO
URCES_FAILED

Resource allocation (config
generation) for service is
failed on ATOM

PROVISION_RESOURCES_FAILED Execution of configuration of
service on the device failed or
device connection timeout

ERROR Some of the error messages:
● Transaction rolled back.

Rollback completed.
● Operation failed on agent:
● Database exception
● Internal exception
● Operation failed due to

device connectivity issues
during service provisioning

Handling Transaction Failures
If the transaction commit fails, the client can retry the commit by invoking the ‘commit-task’

operation again.

ATOM will apply only those commands that are not provisioned on the devices yet. If the client

wishes to roll back the transaction, he can invoke ‘rollback-task’ operation. ATOM undoes the

provisioning done prior to the failure, thus restoring the device configuration to the original

state. If the rollback also fails, the client retrieves the command set that needs to be applied on

the device to restore the device configuration to its original state. The retrieved command set

can manually be applied. Rollback can be retried by calling ‘rollback-task’ operation again.

18

ATOM API Guide

Using Query Parameters
Each RESTCONF operation allows zero or more query parameters to be present in the request

URI. The specific parameters that are allowed depends on the resource type, and sometimes

the specific target resource used, in the request.

19

ATOM API Guide

Fields Query Parameter
The "fields" query parameter is used to optionally identify data nodes within the target resource

to be retrieved in a GET method. The client can use this parameter to retrieve a subset of all

nodes in a resource.

Example - Retrieving all the entries of the target container

Let us assume that the target source is a Credential Set. To retrieve only the “name” and the

“transport-type” fields of all the Credential Sets contained within ATOM, execute the

following query:

/restconf/data/controller:credentials/credential-sets?fields=credential-set(na
me;transport-type)

Example - Retrieving a specific entry of the container

Let us assume that the target source is a particular credential set of name “xyz”. To retrieve

only the “name” and the “port number” fields of this credential set only, execute the

following query:

/restconf/data/controller:credentials/credential-sets/credential-set=xyz?field
s=name;port-number

Example - Retrieving the child node of a node by providing path in the fields

Let us assume that the target source is “devices”. To retrieve the “name” and the “rd” fields of

the “vrf” , a child node of the “device”:

/restconf/data/controller:devices.xml?fields=device/l3features:vrfs/vrf(name;r
d)

Depth Query Parameter
The "depth" query parameter is an optional parameter which can be used to retrieve all the

nodes under a resource till a specified hierarchy tree depth.

Example - Retrieving all the entries of the target device for a specified depth

Let us assume that the target device is 172.16.1.130. Instead of retrieving complete tree under

a device which can be of unknown depth, to retrieve only the interested childs available till a

depth of 2 contained within ATOM, execute the following query:

/restconf/data/controller:devices/device=172.16.1.130.xml?depth=2

20

ATOM API Guide

Pagination in APIs
While sending an API request to ATOM, you can specify the number of resources, and the

specify the record, starting from which the entries should be returned in the response body. The

request header should contain the “limit” and the “offset” keywords in the URL.

Using the Limit parameter
The limit parameter tells the API how many records should be retrieved from the entire set of

results:

/restconf/data/controller:credentials/credential-sets.xml?limit=2

Using the Offset parameter
The “offset” parameter tells the API where to start returning records from the entire set of

results.

Let us assume that there are four Credential Sets available in the following order:

● Set 1

● Set 2

● Set 3

● Set 4

Request: GET
/restconf/data/controller:credentials/credential-sets.xml?limit=2&offset=1

Response:
Set 2
Set 3

Request:
/restconf/data/controller:credentials/credential-sets.xml?limit=2&offset=2

Response:
Set 3
Set 4

Request: /restconf/data/controller:credentials/credential-sets.xml?offset=3

Response:
Set 4

21

ATOM API Guide

Invoking ATOM APIs from REST Client

Introduction
You can access the ATOM RESTCONF APIs using either the GUI (REST Client) or CLI methods

(cURL). Clients use HTTP methods such as GET, POST, PUT, and DELETE to make Requests to the

ATOM server. The base URL to perform a RESTCONF based operation is

https://<server-ip>/restconf, where <server-ip> is the IP address of the ATOM VM

Any client application that can send HTTP Requests over a secure channel by using SSL can be an

appropriate tool for developing RESTful applications with the ATOM API.

Constructing the API Request
A typical RESTCONF request is outlined below:

For this example, the web browser is Google Chrome and the REST client is POSTMAN and the

chosen REST operation is GET.

1. Login to the VM using the administrator’s credentials

2. Open the POSTMAN rest client tool and follow the steps as outlined below:

3. In the Normal tab, go to the Enter request URL field, enter the URL in the following

format.

Base URL : https://<server-IP>/restconf/data/controller.xml, where server-IP is the IP

address of the ATOM server VM

4. Click the Authorization tab, choose Bearer Auth as the Authentication type.

5. Click the Headers tab to enter the following information:

Enter Content-Type and value as application/xml.

6. Select the appropriate operation (any of the RESTCONF operations) to be performed on

the API object.

7. Click Send

8. The resulting Response pattern is displayed in the text box.20

22

ATOM API Guide

Example

You can retrieve all the child entities in Credentials as illustrated below:

1. Open the POSTMAN client session in another browser.

2. In the Authorization tab, enter the token obtained as specified in the Authentication.

3. Click Send to send the request to the ATOM server.

4. Click the Body tab to see the Response obtained for the Request

Generating the X-TASK-ID
Before performing any RESTCONF operation such as POST, PUT or DELETE, a transaction ID

should be generated. This transaction ID or the task ID is used to poll ATOM for all the

subsequent tasks; commit_task and get-details-task. For all the RESTCONF operations, except

GET, follow these steps:

1. Begin a transaction.

Request
URI https://<VM-IP>/restconf/operations/tasks:begin-task.xml
where VM-IP is the IP address of the ATOM VM
Payload: Not Applicable

Operation: POST

23

ATOM API Guide

Headers
APIVersion: 2.0
Content-Type: application/xml

Response
200 OK
<taskId>613f5f45-dd29-4783-8527-7303756db312</taskId>

2. Enter the value of the <taskId>, generated in the above step, in the X-TASK-ID field in

the Headers tab.

3. Commit the transaction.

Request
URI https://<VM-IP>/restconf/operations/tasks:commit-task.xml
where VM IP is the IP address of the ATOM VM

Payload: Not Applicable

Operation: POST

Headers
APIVersion: 2.0
Content-Type: application/xml
X-TASK-ID: 613f5f45-dd29-4783-8527-7303756db312

Response
200 OK
<taskId>613f5f45-dd29-4783-8527-7303756db312</taskId>

The task can be monitored by the following: https://<VM-IP>/restconf/operations/tasks:

get-full-task-details.xml. Track task details by using above URL at that instance.

Request
URI https://<VM-IP>/restconf/operations/tasks:get-full-task-detail.xml
where VM IP is the IP address of the ATOM VM

Payload:<taskId>613f5f45-dd29-4783-8527-7303756db312</taskId>

Operation: POST

Headers
APIVersion: 2.0
Content-Type: application/xml

Response
200 OK

24

ATOM API Guide

Using the POST operation on the URL, you can periodically check progress until the task is

completed.

Generating the Payload
From the "Schema Browser", obtain the path of the entity which needs to be accessed. This will

give the XML schema file of the YANG entity defined in ATOM.

Fill in the values for the fields described in the schema and send the request to ATOM as

described in the section "Constructing the API Request "

Examples of ATOM APIs
This section contains different examples of restconf APIs for respective ATOM entity involved.25

Adding a Credential Set

Request
URI https://<VM-IP>/restconf/data/controller:credentials/
credential-sets.xml?
where VM_IP is the IP address of the ATOM VM
Body:
<credential-set>

<enable-password>
elastic
</enable-password>
<snmp-version>
SNMPV2C
</snmp-version>
<cli-configcmd-time-out>
100
</cli-configcmd-time-out>
<time-out>
10
</time-out>
<username>
admin
</username>
<port-number>
23
</port-number>
<snmp-read-community-str>
public
</snmp-read-community-str>
<config-retrieval-credential>
true
</config-retrieval-credential>
<password>
Elastic+123
</password>
<transport-type>
TELNET
</transport-type>

25

ATOM API Guide

<name>
restIOS
</name>
<cr-wait-time>
10
</cr-wait-time>
<command-execution-wait-time>
500
</command-execution-wait-time>
<number-of-retries>
10
</number-of-retries>
<cr-time-out>
5
</cr-time-out>

</credential-set>

Response
Status:202
Reason: Accepted

Onboarding a device to ATOM

Request
URI https://<VM-IP>/restconf/data/controller:devices.xml?
where VM_IP is the IP address of the ATOM VM

Body:
<device>

<name>
device139
</name>
<management-mode>
MANAGED
</management-mode>
<manage-by-management-station>
false
</manage-by-management-station>
<credential-set>
restIOS
</credential-set>
<id>
139device
</id>
<mgmt-ip-address>
172.16.1.139
</mgmt-ip-address>

</device>

Response
Status:202
Reason: Accepted

26

ATOM API Guide

Creating a vrf entry on the device

Request
URI
https://<VM-IP>/restconf/data/controller:devices/device=<device-id>/vrfs.xm
l?
where VM_IP is the IP address of the ATOM VM
where device-id is the unique ID with which device is onboarded to ATOM VM

Body:
<vrf>

<name>
vrf-internal
</name>

</vrf>

Response
Status:202
Reason: Accepted

Creating the Service

Request
URI https://<VM-IP>/restconf/data/controller:services.xml?
where VM_IP is the IP address of the ATOM VM

Body:
<l3service>

<name>test_sub_intf2</name>
<device-ip>172.16.1.139</device-ip>
<interface-mode>sub-interface</interface-mode>
<vrf>vrf2</vrf>
<vlan-id>1002</vlan-id>
<interface>FastEthernet8</interface>
<ip-address>192.168.15.1</ip-address>
<netmask>255.255.255.0</netmask>

</l3service>

Response
Status:202
Reason: Accepted

27

ATOM API Guide

Webhook API Support

Users can invoke Workflows defined in ATOM using webhook url.

Webhook URL :

curl -X POST -k -d <payload> -H "Content-Type: application/json"

"http://username:password@<server_ip>/rest/webhook?wf_name=<workflowName>&atom_

user_name=<userName>&atom_user_owner=<owner>"

Wf_name : workflow name.

Atom_user_name: atom user name

Atom_user_owner: tenant name

Query params wf_name, atom_user_name and atom_user_owner are mandatory params.

Example :

curl -X POST -k -d '{"param1":"test","param2":"test2", "var1":[1,3,4,5]}' -H "Content-Type:

application/json"

"http://username:password@<server_ip>/rest/webhook?wf_name=createDevice&atom_user_

name=systemuser&atom_user_owner=system"

Tools for API Development and Testing

Schema Browser
Schema Browser is a built-in tool of ATOM that provides a graphical view of the data model

objects maintained in ATOM. You can query for the required object by providing the instance

path of the target.

1. Login to ATOM and navigate to Administration > System > General Settings > Developer

Options

2. Select the Enable Developer Mode option.

3. After selecting this option, navigate to Developers Tools > Schema Browser

4. In the search field, enter the path of the target to know the YANG schema of the object

5. For example, to retrieve the schema file of the Credential Set object as shown below:

○ Enter the path of the target in the Schema Path box.

○ Select the path from the drop-down menu.

28

ATOM API Guide

The schema file of the object defined in the data model is displayed in the below pane.

Looking into the schema representation, you can now construct the payload that can be sent in

the Request body of an ATOM API. This can be sent as an input in the Request Body while

constructing an API query.

Swagger
You can now leverage the rich API set of ATOM using the Swagger UI integrated with ATOM.

1. Enable the Developer Mode in ATOM as follows:

Navigate to Administration > System > General Settings > Enable-Developer-Mode

2. Click RestConf APIs option by navigating to Developer Tools > RestConf APIs

3. In the newly opened browser tab of APIs Documentation, Select API drop-down, select

the entity modeled in ATOM and you would like to explore the corresponding API

request, response patterns.

○ RESTCONF Data

Select this option to view the APIs of the configuration data of the end points

modeled in YANG

○ RESTCONF RPC

Select this option to view all the APIs of the RPCs modeled in YANG

○ RESTCONF Services

To view the APIs required to construct the service models in YANG

4. In the selected entity, look at the Request parameters that are required to construct the

payload and substitute the values in these parameters by using the “Try it out” option

available in the Swagger UI.

Scenarios
1. Automation Activity

a. Connecting to ATOM

29

ATOM API Guide

b. Submitting a Task to ATOM

c. Polling Task Status from ATOM

d. Asynchronous Notification from ATOM

2. Receive Notifications/Alerts on Slack/Email etc. from ATOM

3. Trap Forwarding from ATOM to External Client

4. Client receiving Task updates via ATOM Streams

5. Consumer listening on ATOM Kafka Topic

6. Invoking a Workflow with Notification from ATOM File Server. (e.g: File/Image download

completion from ATOM File Server to Network Device)

Notifications Support In ATOM
ATOM supports the following notification definitions

1. YANG Notifications

2. ATOM ChangeLog Notifications

3. Yang Notifications generated by Devices (when they support)

4. NAAS Events (Old generation style but still useful)

5. ATOM Infrastructure Monitoring Alerts

6. Device/Network Monitoring Alerts

Overall, the following transports are supported

1. SSE

2. Kafka Topics

3. Web Sockets

4. RabbitMQ

Notification Type And Detail

Notification Type Notes

YANG Notification

These are the notifications defined in Yang modules and
Sub modules, according to YANG 1.1 spec.

Notifications defined in ATOM yang modules will be
implemented by ATOM.

If a user adds their own Yang schema with Notifications,
the implementation details need to be supplied along with
the Yang Schema. The way to supply the implementation is

30

ATOM API Guide

by defining an ‘ATOM Change Log’ script. See the next item.

ATOM Change-Log Notification
(ACLN)

Custom Implementation of ATOM.

Although Yang Notification is the prescribed way of defining

notification structures, when a client defines a yang

notification the logic to generate the notification payload

has to be implemented by ATOM development team. It is

understood that clients may not always be willing to change

yang models to add new notification definitions nor they

can wait for ATOM team to implement them. For those

scenarios, clients can use the ACLN way of adding

notifications.

ACLN lets the client

1. To define condition to be matched against the

transaction change log

2. To refer to a yang notification or specify a

structure/payload of the notification

3. To provide logic to generate the notification

ATOM provides access to the change log and

utilities.

Using this facility, it is possible to extend the notification

capabilities of ATOM dynamically.

YANG Notifications generated by
Devices

As specified in YANG 1.1 Spec and Restconf Spec.

Users can configure ATOM to subscribe for Netconf
Notifications generated by devices. On top of it, users can
also choose to expose those notifications to the North
bound clients via SSE transport.

NAAS Events

Custom Implementation of ATOM.

NAAS Event is an old generation style notification but it is
still useful.

ATOM Infra monitoring Alerts

Custom Implementation of ATOM.

ATOM infra components such as ATOM services, Infra
services etc are monitored and alerted when some
conditions are met. These alerts can be acted upon in
various ways such as emailing, slack channels, invoke
workflows, raise tickets etc. And these are published to a

31

ATOM API Guide

kafka topic, so integrators can write consumer logic against
these.

Device Monitoring Alerts

Custom Implementation of ATOM

If customers enable the Device Telemetry component of
their ATOM deployment, devices are monitored and alerted
when some conditions are met. These alerts can be acted
upon in various ways such as emailing, slack channels,
invoke workflows, raise tickets etc. And these are published
to a kafka topic, so integrators can write consumer logic
against these.

Notification Type, Payload Schema Information

Notification Type Brief Notes Schema Type

YANG
Notification

As Specified in YANG 1.1
Spec and Restconf Spec

As per YANG 1.1 spec

ATOM
Change-Log
Notification

Custom Implementation
of ATOM

The data structure of the notification itself is as
specified by the user. If the notification
definition is referring to a yang notification, then,
the schema of the payload is driven by yang
definition. Otherwise, there is no formal schema
for the notification payload. Since this structure
is defined by the user (not ATOM platform), they
know what to expect as part of the payload.

YANG
Notification
generated by
Devices

As Specified in YANG 1.1
Spec and Restconf Spec

As per YANG 1.1 spec

NAAS Events
Custom Implementation
of ATOM

Overall structure is defined as a yang model.

ATOM Infra
monitoring Alerts

Custom Implementation
of ATOM

Alert structure is defined as a yang model.

Device
Monitoring Alerts

Custom Implementation
of ATOM

Alert structure is defined as a yang model.

32

ATOM API Guide

SSE (Server Sent Events) Support
ATOM Supports SSE Transport as specified in the Restconf spec.

Fetching Stream Information

GET /restconf/data/ietf-restconf-monitoring:restconf-state/streams

Sample Output

<streams xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf-monitoring">
<stream>

<name>NETCONF</name>
<description>default NETCONF event stream. There are other purpose built streams

available.</description>
<replay-support>true</replay-support>
<access>

<encoding>xml</encoding>
<location>/streams/NETCONF</location>

</access>
<access>

<encoding>json</encoding>
<location>/streams/NETCONF/json</location>

</access>
</stream>

<stream>
<name>ACLN</name>
<description>event stream to receive changeLog notifications from ATOM.</description>
<replay-support>true</replay-support>
<access>

<encoding>xml</encoding>
<location>/streams/ACLN</location>

</access>
<access>

<encoding>json</encoding>
<location>/streams/ACLN/json</location>

</access>
</stream>

<stream>
<name>TASKS</name>
<description>event stream to receive Task updates from ATOM.</description>
<replay-support>true</replay-support>
<access>

<encoding>xml</encoding>
<location>/streams/TASKS</location>

</access>
<access>

<encoding>json</encoding>
<location>/streams/TASKS/json</location>

</access>

33

ATOM API Guide

</stream>

<stream>
<name>ALARMS</name>
<description>event stream to receive ALARM notification from ATOM.</description>
<replay-support>true</replay-support>
<access>

<encoding>xml</encoding>
<location>/streams/ALARMS</location>

</access>
<access>

<encoding>json</encoding>
<location>/streams/ALARMS/json</location>

</access>
</stream>

</streams>

List of Streams (for a quick glance)

Extracted from the above xml
/streams/NETCONF
/streams/TASKS
/streams/ALARMS
/streams/ACLN

Sample SSE Session

curl -u admin:admin localhost:8080/restconf/streams/stream/NETCONF

data:<notification
xmlns="urn:ietf:params:netconf:capability:notification:1.0"><eventTime>2020-01-05T12:33:58.078Z</eventTime
><task-id>Fge1AvVq1ORg-VJaWwGKj47A</task-id><report> <notification-spec>$$tasks$$</notification-spec>
<anchor-object></anchor-object> <source-datanode>Fge1AvVq1ORg-VJaWwGKj47A</source-datanode>
<source-datanode-owner>system</source-datanode-owner> <matcher-type>DEFAULT</matcher-type>
<generator-type>DEFAULT</generator-type>
<timestamp>2020-01-05T12:33:58.078Z</timestamp></report><task-notification><id>Fge1AvVq1ORg-VJaWwGK
j47A</id><status>IN_PROGRESS</status><operation-name><![CDATA[Create:
vendor]]></operation-name><starttime>1578227638075</starttime><endtime>0</endtime><message>null</m
essage></task-notification></notification>

Sample SSE Python code

Use the below client script to receive notification from ATOM

Usage :

To receive notifications using user credentials

1. python3 notification.py -k "172.16.18.153" -upriv "admin" -kp "443" -c “atom” -u "admin"

-mp "Secret@123" -s "TASKS"

34

ATOM API Guide

Copy client secret from response

2. python3 notification.py -k "172.16.18.153" -upriv "user" -kp "443" -r "system" -c "atom"

-u "john" -p "Secret@123" -s "TASKS" -cs "dc705bda-41c7-459e-9fa2-306567624d11"

To receive notifications using admin credentials

1. python3 notification.py -k "172.16.18.153" -upriv adminstream -kp "443" -r "system" -c

"atom" -u "admin" -mp "Secret@123" -p "Secret+123" -s "TASKS"

To receive notifications in json format use: -f “json”

Note: below block of code should be saved with name notification.py

import requests
import urllib3
import argparse
import ast
import warnings
import time
warnings.filterwarnings("ignore")
urllib3.disable_warnings()

class KeycloakManager:

def __init__(self, keycloak_host, keycloak_port):
self.realm = "system"
self.client = "atom"
self.user = ""
self.password = ""
self.master_password = ""
self.stream_format = ""
self.keycloak_host = keycloak_host
self.keycloak_port = keycloak_port
if keycloak_port == "443":

self.keycloak_url = "https://" + self.keycloak_host
else:

self.keycloak_url =
"https://app."+self.keycloak_host+".nip.io:" + self.keycloak_port

self.master_auth_openid_token_url = self.keycloak_url +
"/auth/realms/master/protocol/openid-connect/token"

def check_keycloak_status(self):
trials = 20
i = 0
while i < trials:

try:

35

http://notification.py/

ATOM API Guide

x = requests.get(self.keycloak_url, verify=False)
if x.status_code == 200 or x.status_code < 300:

return 0
else:

print("Status code: " + str(x.status_code))
time.sleep(20)
i = i + 1

except Exception as e:
print(e)
time.sleep(20)
i = i + 1

return 1

def get_token(self):
print("Fetching token from client {} ".format(self.client))
params = {'client_id': self.client, 'grant_type': 'password',

'username': self.user, 'password': self.password}
x = requests.post(self.master_auth_openid_token_url, params,

verify=False).content.decode('utf-8')
time.sleep(1)
print ('\n')
return ast.literal_eval(x)['access_token']

def get_client_secret(self, token):
client_url = self.keycloak_url + "/auth/admin/realms/" + self.realm

+ "/clients/?clientId=" + self.client
headers = {

'content-type': 'application/json',
'Authorization': 'Bearer ' + token

}
x = requests.get(client_url, verify=False, headers=headers).json()
time.sleep(1)
id = x[0]['id']

#/{realm}/clients/{id}/client-secret
client_url = self.keycloak_url + "/auth/admin/realms/" + self.realm

+ "/clients/" + id + "/client-secret"
headers = {

'content-type': 'application/json',
'Authorization': 'Bearer ' + token

}
x = requests.get(client_url, verify=False, headers=headers).json()
time.sleep(1)
return x['value']

def get_access_token(self, client_secret):
request_url = self.keycloak_url+"/auth/realms/" + self.realm +

"/protocol/openid-connect/token"
params = {'client_id': self.client,'grant_type': 'password',

'client_secret': ''+client_secret+'', 'scope' :'openid', 'username':self.user,
'password': self.password}

print(params)
x = requests.post(request_url, data = params,

verify=False).content.decode('utf-8')
time.sleep(1)
print(x)

36

ATOM API Guide

return ast.literal_eval(x)['id_token']

def notification(self, id_token, stream):
headers = {'Authorization': 'Bearer ' + id_token}
print (headers)
url = ''
if(self.stream_format == 'xml'):

url = self.keycloak_url+"/restconf/streams/stream/"+stream
print (url)

elif(self.stream_format == 'json'):
url =

self.keycloak_url+"/restconf/streams/stream/"+stream+"/json"
print (url)

with requests.get(url, stream=True, verify=False, headers=headers,
timeout=None) as r:

for line in r.iter_lines(chunk_size=1):
print (line)

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-k', '--keycloak-server', dest='keycloak_server',

help='keycloak host')
parser.add_argument('-kp', '--keycloak-port', dest='keycloak_port',

help='keycloak port')
parser.add_argument('-r', '--realm', dest='realm', default='system',

help='keycloak realm')
parser.add_argument('-c', '--client', dest='client', default='atom',

help='keycloak client')
parser.add_argument('-upriv', '--user-privilege',

dest='upriv',choices=['admin', 'user', 'adminstream'], help='user privilege
admin/user/adminstream')

parser.add_argument('-u', '--user', dest='user', default='admin',
help='keycloak admin user')

parser.add_argument('-p', '--password', dest='password',
default='admin', help='keycloak admin password')

parser.add_argument('-mp', '--master-password', dest='master_password',
help='keycloak master admin password')

parser.add_argument('-s', '--stream', dest='stream', choices=['TASKS',
'ALARMS', 'ACLN', 'NETCONF'], help='stream of the notification')

parser.add_argument('-cs', '--client-secret', dest='client_secret',
help='client secret')

parser.add_argument('-f', '--format', dest='stream_format',
choices=['json', 'xml'], default='xml', help='format xml/ json')

args = parser.parse_args()

keycloak_server = args.keycloak_server
keycloak_port = args.keycloak_port
realm = args.realm
user = args.user
password = args.password
client = args.client
stream = args.stream
upriv = args.upriv
assert upriv in ['admin', 'user', 'adminstream'], 'user privilege must

be admin, user or adminstream'

37

ATOM API Guide

stream_format = args.stream_format
keycloak_object = KeycloakManager(keycloak_server, keycloak_port)

keycloak_object.user = user
keycloak_object.realm = realm
keycloak_object.client = "admin-cli"
keycloak_object.stream_format = stream_format
if keycloak_object.check_keycloak_status() == 0:

print("Keycloak is active")
pass
else:
print("Keycloak is inactive. Exiting..")
exit(1)

if (upriv =="admin"):
master_password = args.master_password
keycloak_object.password = master_password
token = keycloak_object.get_token()
keycloak_object.client = client
client_secret = keycloak_object.get_client_secret(token)
print("clientSecret:" + client_secret)
elif(upriv =="user"):
client_secret = args.client_secret

keycloak_object.client = client
keycloak_object.password = password
id_token = keycloak_object.get_access_token(client_secret)
print("id_token:" + id_token)
keycloak_object.notification(id_token,stream)
elif(upriv =="adminstream"):
master_password = args.master_password
keycloak_object.password = master_password
token = keycloak_object.get_token()
keycloak_object.client = client
keycloak_object.password = password

client_secret = keycloak_object.get_client_secret(token)
print("clientSecret:" + client_secret)
id_token = keycloak_object.get_access_token(client_secret)
print("id_token:" + id_token)
keycloak_object.notification(id_token,stream)

ATOM Change Log Reactions

ACLR provides facilities to listen for transaction changes and express reactions to the change.

The reaction can be

1. Raise a Notification (We covered this aspect as ATOM Change Log Notification, ACLN)

2. Invoke some code (That will run on its own transaction)

38

ATOM API Guide

3. Veto the change (if you need to rollback an on-going transaction based on a condition

that is not already modeled)

At a high level, ACLR has the following structure

reaction-definitions {
definition {
Name;
context {
anchor-object;
change-type;

}
trigger-condition {
// you can use xpath expression , groovy script etc to code the condition

}

reaction {
case notification {
notification-object-structure {

case yang-notification {
yang-notification-identifier;

}
case custom {

notification-structure; // xml/json structure, for ex
}

}
}

case veto {
message;

}

case take-action {
action-spec // you can call a rpc,action or call a script, workflow etc.

}
}

}
}

ATOM System Health & Availability
ATOM System Health, Availability, Performance of various components can be performed using

various mechanisms:

1. Graphical User Interface - This is documented in “ATOM Deployment Guide”

a. System Alerts can be viewed ATOM End User Interface

b. Advanced Metrics can be viewed using Dashboards in Grafana

2. Notifications - Documented in Sections Below

3. Polling

a. SNMP

b. HTTP Probe

39

ATOM API Guide

Notifications
Prometheus Alert Manager will send the notifications about each component's health and

availability whenever the anomalies are found. It is a push mechanism.

To get the alerts in real time, admin has to configure the notification routing and receivers. By

Default, ATOM deployment comes with slack and webhook as notification receivers.

To notify alerts to the Slack channel, the user has to provide the slack_api_url. Refer to Sending

messages using Incoming Webhooks section in https://api.slack.com/messaging/webhooks to

get the unique URL.

The push notifications to any http endpoint, user can add the url under webhook_configs

section.

Prometheus Alert Manager can be integrated with the following receivers.

1. Slack

2. Email

3. PagerDuty

4. Pushover

5. OpsGenie

6. Webhook (It accepts any generic http endpoint)

7. WeChat

Refer to the below document for more details.

https://prometheus.io/docs/alerting/latest/configuration/#webhook_config

Use k8s dashboard (https://<URL>/k8s/) or login to the k8s master node and execute the below

command to change the configuration.

kubectl edit cm infra-tsdb-monitoring-alertmanager -n atom

40

https://prometheus.io/docs/alerting/latest/configuration/#webhook_config

ATOM API Guide

Polling

HTTP Probe

ATOM provides a way to check availability using REST Endpoint. Bearer authentication token as

specified in Authentication needs to be provided

GET https://<ATOM_URL>:30443/rest/ui/systemInfo and check for the HTTP status code in

response. Status code 200 will indicate that the ATOM is available.

SNMP

ATOM supports SNMP Agent and can be used by OSS Tools to perform Basic Health checks.

ATOM Support SNMP Protocol Version SNMPV2c.

SNMP Access can be enabled in Admin settings from ATOM User Interface - Administration ->

System -> General Settings.

41

ATOM API Guide

Supported MIBs:

1. SYSTEM-MIB

a. Supported OIDs:

i. sysDescr

ii. sysObjectID

iii. sysUpTime

iv. sysContact

v. sysName

vi. sysLocation

vii. sysServices

viii. sysORLastChange

b. Sample output for a snmpwalk on the system mib:

snmpwalk -v2c -c public <atom-master-ip>:port .1.3.6.1.2.1.1

snmpwalk -v2c -c public 172.16.22.92:30954 .1.3.6.1.2.1.1

SNMPv2-MIB::sysDescr.0 = STRING: ATOM, version: 11.9.0.0

SNMPv2-MIB::sysObjectID.0 = OID: SNMPv2-SMI::enterprises.42177.1.1

DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (2486102) 6:54:21.02

SNMPv2-MIB::sysContact.0 = STRING: admin@anutanetworks.com

SNMPv2-MIB::sysName.0 = STRING:

SNMPv2-MIB::sysLocation.0 = STRING: Cloud

SNMPv2-MIB::sysServices.0 = INTEGER: 72

SNMPv2-MIB::sysORLastChange.0 = Timeticks: (0) 0:00:00.00

42

