
Workflow Developer Guide
version 11.8

ATOM Development Guide - Workflow

Table of Contents

ATOM Workflow Development - High Level View 4

Outline of the document 4

Network Automation & MOPs 6

Network Services 6

Network MOPs 6

ATOM Workflow 7

Technical requirements for developing Workflow in ATOM 7

Workflow Package Development 8

Create a Workflow package 8

Update the Dependencies & Version in build.gradle 9

Archive the Workflow Package 11

Developing Workflows - BPMN/DMN Modelling 12

Package Explorer 12

BPMN Diagram 14

DMN Diagram 14

DMN Decision table 15

Deploy & Validate 15

Use Case 1 - Software Upgrade 16

Figure 1 - BPMN Diagram for SMU with Ping check 18

Figure 2 - BPMN DIagram for SMU with Async Notification 18

Use Case 2 - Config Provisioning 20

User Inputs Form 20

Service Task to configure the Device 22

Use Case 3 - L3 Service Provisioning 24

Use Case 4 - CLA Remediation 25

Deploying & Operating on Workflows 29

Swagger/OpenAPI Integration 30

Appendix 37

ATOM Workflow FAQs & Examples 37

ATOM Workflow Activities 38

Timer 38

2

ATOM Development Guide - Workflow

Sub-process 40

Signal End Event & Boundary Event 42

Decision box 45

Multi-instance parallel execution 47

New user input to existing inputs 49

Add new XML tag to the existing payload 50

Restconf & RPC call to ATOM 51

How Workflow Can Program Against Various Events in ATOM 57

NAAS-EVENT 57

TSDB Alerts 58

Delegate Classes 58

AtomRpcDelegate 59

AtomRestconfDelegate 59

AtomEventsSubscriptionDelegate 60

http-connector 60

Scripting support in ATOM workflow 61

External Python Code Invocation 62

Procedure - 1 (Python2) 62

Sample groovy code for invocation of external python script 62

Sample content of script_python.py 63

Procedure - 2 (Python3) 64

Package structure 64

Python Code Execution 65

invoke-python-function (single string arg) 65

invoke-python-function (single int arg) 65

invoke-python-snippet 66

invoke-python-file 67

Sample groovy code for invocation of external python script 67

Sample content of script_python.py 68

Device Connection Timeout 69

Handling larger responses from device 70

Commenting code 71

Error handling 72

Custom form fieldTypes in ATOM workflow 72

Examples for custom fieldTypes 73

Validations/Constraints for custom form fields 82

ATOM SDK 85

Introduction 85

ATOM SDK folder hierarchy 85

3

ATOM Development Guide - Workflow

Setting up the environment for ATOM Package Plugin 86

Prerequisites 86

Setting up the environment in Ubuntu 86

Setting up the environment in Windows 86

Setting up the repository for developing packages 87

Migration of Workflows 91

ATOM API Development and Testing Reference 91

References 91

YANG 91

RESTCONF 91

Gradle 91

BPMN 91

DMN 91

ATOM Workflow Development - High Level
View

Outline of the document
ATOM Platform provides users to develop with various extensions to out-of-the box capabilities.

1) Device Drivers - Device Drivers allow ATOM to work with devices to Collect
configuration, Provision Configuration, Collect Performance & Other Operational Data,
Execute Show and Diagnostic Commands.

4

ATOM Development Guide - Workflow

a) Configuration Discovery & Provisioning
b) Performance & Inventory Collection (SNMP, SNMP Trap, Syslog, Telemetry)

2) Network Automation
a) Stateful Services like Application Delivery, L3 VPN, etc.,
b) MOP Automation like Software Upgrade, Password Rotation etc.,

The document covers Network MOP Automation Development Flows. Following is a high level
breakdown of the content:

1. Workflow Package Development
2. Developing Workflows - BPMN Modelling
3. Deploying Workflow Package

In the Appendix, additional examples, library utils, ATOM SDK and FAQs are mentioned in detail.

5

ATOM Development Guide - Workflow

Network Automation & MOPs
Network automation scenarios fall into following categories:

1. Network Services

a. Stateful Services - Networking provisioning use case with following life cycle:

i. Discovery - Discovery of existing Services

ii. Create - Create a green field service

iii. Update - Update Service. This may be repeated multiple times

iv. Delete - Retire the service

Examples:

i. Application Deployment in Data Center

ii. Layer-3 VPN

iii. Layer-2 VPN

iv. Private Cloud to Public Cloud Interconnect

What’s involved in developing Stateful services ? - Refer to ATOM Network

Services Development SDK

2. Network MOPs

a. One-Time or Task Oriented Provisioning Activities - These activities may be

repeated from time-to-time but do not need information on prior state.

Examples below:

i. Password Rotation

ii. SNMP Community String, SNMP Trap, Syslog config rotation

iii. Configuration Migration projects like - IPV4 to IPV6 Migration

b. One-Time or Task Oriented Operational Activities - Network MOPs typically

involve Network maintenance activities like the following:

i. Device Software Image Upgrade

ii. Device RMA

iii. Device Configuration Rollback to a prior state

c. Stateless actions in the context of Stateful Services -

i. Pre & Post-Checks during Service Creation

ii. Device or Service Alert Triggering a Service Change

Typical activities in a MOP are as follows:

● Performing Actions on Device - Show commands, Exec Commands, Config

Commands

● Handling/Parsing Device Response

● Checkpointing various states for comparison

● Conditions on checkpoints

6

ATOM Development Guide - Workflow

● End user Input

ATOM Workflow provides a mechanism to define various Activities required to build Network

MOP.

ATOM Workflow
ATOM Workflow applications work on top of services/apis enabled by various ATOM APIs,

Device APIs, Direct CLI invocations, Events etc.,. These applications involve a set of activities or

sub-tasks that include fetching data from devices, pushing configurations to devices, executing

show commands, executing exec operations like ping, install, acting on device events, timers,

end user actions etc.,. Applications usually need to express logic in terms of steps (sequential,

parallel, conditional etc) and ATOM Workflow is a natural fit for those requirements.

ATOM workflow engine implements BPMN standard processes. ATOM being a YANG model

driven platform, it exposes APIs and models expressed in YANG schema, although ATOM also

lets application developers to by-pass device yang models and use CLIs or device native apis

directly.

Workflow Engine Communication

Technical requirements for developing
Workflow in ATOM
Workflow Automation can be a combination of Stateless and Stateful actions. In such scenarios

MOP will contain stateless actions like pre-checks, while performing API invocations against

Device or Service Models to perform stateful transactional action.

7

ATOM Development Guide - Workflow

Overall Developers would need some familiarity with the following

1. BPMN, DMN

2. ATOM Workflow APIs

3. Device configurations (CLI)

4. A Scripting language (Python, Groovy, JavaScript)

5. ATOM SDK and Tooling - ATOM uses a package structure to ingest application models

and programming. Workflow is also ingested using the same package structure. ATOM

provides SDK and GRADLE based Tooling to help develop these packages. In essence,

workflow development starts with package development. In the following sections we

will elaborate the ATOM SDK and tooling in relation to workflow development. ATOM

SDK uses the Gradle build system.

6. YANG (Especially, when Device yang models are used).

7. RESTCONF

Workflow Package Development
Create a Workflow package
After the successful one time setup of the ATOM SDK environment (Refer Appendix section
ATOM SDK), you can create the required workflow package as below.

1. Run below command to create the package:

python sdk.py -c

create.py: This script helps you create different types of package: service package, device
package or device driver package.

2. Select the type SERVICE_MODEL package type as shown below

3. Enter the name of the package and other inputs as shown below

8

ATOM Development Guide - Workflow

After the successful run of the above build, the service package folder structure for workflow
purpose is created.

In the vendor folder create a new folder named workflow. After development of workflow
bpmn as described in section Developing Workflows - BPMN Modelling place the bpmn in this
folder as shown below.

Update the Dependencies & Version in build.gradle
After a successful creation of a workflow package, there could be some additional package(s)
required as ‘dependencies’. Accordingly modify the default dependencies listed in the
build.gradle file, which is located in the root level of the created package.

9

ATOM Development Guide - Workflow

In scenarios where MOP performs stateless actions on the device directly either via CLI/Native
APIs make sure dependency of the servicemodel package is there. This package has the required
library utilities for connecting to the device and executing CLIs/APIs.

In scenarios where MOP performs API invocations against Device or Service Models, make sure
dependency of that respective model package is there.

Let’s consider a MOP which performs both stateless actions and API invocations against Juniper
Device Models, then make sure dependency of servicemodel-7.0.4.0, juniper-8.0.0.1,
juniper_cli-8.0.0.1 and workflowlib-7.5.1.0 are mentioned as below. (The package names are a
combination of the name of the package and the version number separated by a hyphen)

Resolve the dependencies

Run the command : gradle build --refresh-dependencies

Successful execution of this command ensures that the dependencies mentioned in the
build.gradle file are mapped fine.

10

ATOM Development Guide - Workflow

Update the version

In the “build.gradle” file, metadata about the package is present in the version & packageXml
object. Update the version based on the revision of the service package you are working on.

Archive the Workflow Package

Once the Workflow bpmn is defined and placed in the vendor/workflow folder of the package

structure, use the gradle task “gradle archive” for creating the uploadable zip with its

dependencies.

The zip will be stored into the build folder like below

Now the workflow package zip is ready for Upload to ATOM.

11

ATOM Development Guide - Workflow

Developing Workflows - BPMN/DMN

Modelling

Workflow can be used in multiple scenarios such as Config provisioning, Software Upgrade,

Protocol migration, Closed Loop automation etc..

Package Explorer
Navigate to Administration -> Plugins & Extensions -> Package Explorer

Under workspace, we can start BPMN and DMN Modelling by using (+) button.

Create a service package by selecting the type and clicking on create then it will generate folder

structure automatically.

12

ATOM Development Guide - Workflow

The sample folder structure looks like below after creating a package

Select vendor folder then create BPMN/DMN files by selecting the type of workflow

13

ATOM Development Guide - Workflow

BPMN Diagram

DMN Diagram
Use decision tables in combination with BPMN and Create decision tables for business rule tasks

in your process model.

DMN call activity from BPMN select implementation type as DMN and reference to DMN file

After filling ‘Result Variable’ then ‘Map Decision Result’ will appear in UI then based on user

selection it will return output

14

ATOM Development Guide - Workflow

DMN Decision table

Deploy & Validate
We can deploy and validate the workflow which we developed via package & explorer
And we can validate and see the xml view

15

ATOM Development Guide - Workflow

Use Case 1 - Software Upgrade
Frequently organisations are confronted with the challenge of upgrading their network devices

to the latest patch version. In Large scale Enterprise environments, we will be running a similar

version across the network based on their role.

These situations are very critical in the lifecycle of a device, and need to execute them carefully

with predefined MOP approved by Network Architects.

Typical Software Upgrade will involve the following basic constructs:

1. User Inputs to begin the change like Device, Image Version, Image Repo Details (FTP, SCP

etc..), Software Image

2. Pre Checks - Set of pre checks before proceeding for the actual migration such as check

current running software version, Hardware details, Config backup, Interface and

Protocol level checks etc..

a. If any of the prechecks failed then raise a ticket and stop the migration activity

for that device.

3. Copy the Image from Remote repository to the device (eg: Disk, NVRAM etc..) and set

the boot options as required.

a. Raise an incident if the image copy fails for some reason.

4. Request Network Admin for device reboot and proceed on approval.

5. Check for devices reachability whichever way is feasible as specified below

a. Continuous Ping check within stipulated time. [Fig 1]

b. Listening for any asynchronous notifications like SNMP trap. [Fig 2]

6. Perform Post checks

a. Compare Pre and post check results & if the validation fails then call for a

rollback of that device upgrade activity.

The above sequence of steps are readily understood by networking professionals. Now, let us

see the thought process to translate that logic into ATOM Workflow. Not all the logic is

explained here (A full explanation with diagrams will follow this table).

Use case Requirements
Relevant Concept in

ATOM Workflow
Notes

Which Artifact in
the package this

goes into ?

1

User Inputs to begin the change like Device,

Image Version, Image Repo Details (FTP, SCP

etc..), Software Image

User Inputs are captured via ‘User
Tasks’ in workflow.

User Task is a BPMN
concept, hence it
goes into the bpmn
model.

bpmn

2
Pre Checks - Set of pre checks before proceeding

for the actual migration such as check current

This involves fetching relevant data
from devices. When fetching data
two scenarios are possible in ATOM.

API invocation,
extracting/using the
response etc are

API call, sending the input,
processing output all go
into the bpmn

16

ATOM Development Guide - Workflow

running software version, Hardware

details,Config backup, Interface and Protocol

level checks etc..

Maybe the information is already
available in the ATOM database
(this happens if device yang models
are being used). Or, maybe you
want to fetch it by running a
command on the device. Either
way, fetching is an ATOM api call.
You would use the relevant api and
interpret the response.

Making an api call is done by using
relevant “Delegate” class and filling
in API inputs.
At the same time, interpreting the
API response may involve extracting
from the xml/json result or parsing
the command text.

There may be utilities available to
help with these programming tasks.

part of the bpmn
model itself.

Different Delegate
classes (aka the API)
are explained here.

a. If any of the prechecks failed then

raise a ticket and stop the migration

activity for that device.

Raising a ticket translates to calling
an external service (Such as
ServiceNow) via its API.

Refer to 3rd party
integrations

API call, sending the input,
processing output all go
into the bpmn

4

Copy the Image from Remote repository to the

device (eg: Disk, NVRAM etc..) and set the boot

options as required.

a. Raise an incident if the image copy is

fails for some reason

Most of the time business functions
are made available as YANG rpcs.
You can use ATOM UI developer
tools to browse through available
rpcs. The same list will also be
available in the workflow designer.

Calling an RPC is acheived by using
ATOMRPCDelegate Class.

5
Request Network Admin for device reboot and

proceed on approval. Approval maps to a UserTask

The following diagram depicts a fully expressed bpmn process for the above requirement.

17

ATOM Development Guide - Workflow

Figure 1 - BPMN Diagram for SMU with Ping check

Figure 2 - BPMN DIagram for SMU with Async Notification

BPMN is a fairly large specification. But, the set of constructs we need on a regular basis are

small. The following table explains some of the regularly used BPMN constructs.

Workflow Task/
Event type

Interaction/
Description

Task Name Symbol

User Task
User interacts with
ATOM

SWIM: Device user
inputs, Device
approval to reload

Service task
ATOM to Device
Interaction (CLI/API)

Copy Image and Set
Boot options,"reload"
Device,Perform ping
test to check if device
is online

18

ATOM Development Guide - Workflow

Service task
ATOM to External
API’s

Raise an Alarm and
Notify
Ops-Team,Raise
ServiceNow Incident

Gateway/Decision
box

Control flow within
the process

NA

Timers
Synchronous wait
events within the
process

NA

SubProcess
MultiInstance

Similar to Looping
construct in
programming

Device status check

Call Activity
Similar to DRY
principle such as
Function calls

pre-checks,post-chec
ks,post-checks_valida
tions

Error Boundary Event
Raise an alarm or
incident for any
service task failures

NA

Compensation
Activity (Rollback on
Failures)

Handle the task
failures such as
Config Rollback etc..

call_IOS_Upgrade_rol
lback

Refer to the Appendix section for more details.

19

ATOM Development Guide - Workflow

Python Reference Workflow Construct

For loop Multi-instance

For loop with range Multi instance with loop cardinality

If condition Conditional sequences

Sleep Timer Duration

Throw and catch exception Error Handling Event

continue Non-interrupting Event

break Interrupting Event

functions Call activity

Modules sub-process

Use Case 2 - Config Provisioning
Provision the vlan on the user specified device.

So below are high level tasks to be performed in the workflow.

1. Get inputs from the user such as Device IP, Vlan Number, Vlan description.

2. Form the payload and configure the device

BPMN Diagram for Config Provisioning

User Inputs Form

● First name the whole usecase appropriately like below, so this name can be seen in

ATOM UI.

20

ATOM Development Guide - Workflow

● First action is to get inputs from the user, so let’s name the task

“User_Inputs_to_Provision_Vlan” and “Id” field will be auto-generated, but can be

changed if needed.

● To take the inputs from the user, Click on the “Forms” tab next to “General” and give

input field names like below.

21

ATOM Development Guide - Workflow

These form inputs given by the user can be accessed anywhere in this workflow task.

Service Task to configure the Device

● Form the payload with these inputs and send that as an output. So we create one

“output parameter” with a name called “payload” and “Type” as “script” where script

format is “groovy”. The payload formation is done as xml with user inputs.The last line in

the script will be considered as output of this first workflow task and stored in the

output parameter name “payload” in the above case.

● To perform the POST operation, create a service task and name it as “Create Vlan”

22

ATOM Development Guide - Workflow

To provision the device with provided CLI commands use the following Java class:

“com.anuta.atom.workflow.delegate.AtomRpcDelegate” as shown below.

● Provide Input Parameters for the POST operation that includes atom_url, atom_action,

atom_payload and then the Output Parameter like below.

23

ATOM Development Guide - Workflow

ATOM_INPUT:

ATOM_OUTPUT:

● Place this developed workflow bpmn file in the vendor/workflow folder of the package

structure generated initially in section Creating workflow package using ATOM SDK

Use Case 3 - L3 Service Provisioning

24

ATOM Development Guide - Workflow

In a networking environment, it is often required to provision an L3 service on a device. This use
case depicts the same using inputs from the user in a form based input.

Below are high level tasks performed by the workflow:

1. Get user inputs like Device IP, interface mode, interface, Vlan, VRF, IP address, mask
and description

2. Check the OS type on device
3. Perform a couple of prechecks
4. Create Vlan/VRF based on the device OS
5. Assign IP to the interface
6. Perform a few post checks
7. Perform a reachability test(ping)
8. Compare the pre-post diffs

Use Case 4 - CLA Remediation

Workflows can be used as action items against NaaS Alerts/TSDB alerts. Atom has various

methods to subscribe and listen to alerts in an async manner which can be found in the

appendix section How Workflow Can Program Against Various Events in ATOM of workflow

guide.

Following use case requires us to shutdown the interface which has flapped more than 10 times

in the last 15 mins. To achieve this use case we require four things :

● Create a SNMP collection.

● Create an alert definition.

● Create Workflow.

● Map the workflow as an action item for the alert definition.

For steps 1,2 and 4 refer to the main Atom Guide.

Below is a schematic view of the workflow we will develop :

25

ATOM Development Guide - Workflow

First Step to create the workflow would be to break the use-case into small portions:

● Check if the flapping interface is the management interface of the device. If yes,

then terminate the workflow without any action.

● Take an approval from the Network Admin to shutdown the interface.

● Once the Approval is received, check the device os type so that we generate

corresponding payload to be pushed to the device.

● Shutdown the interface

● We can then wait for the Network Admin approval to unshut the interface after

they troubleshoot the issue.

● Once approved we rollback the shut commands and terminate the flow.

This same flow can be augmented with various steps like :

● Opening a Ticket in the ITSM tool and getting approvals on the ITSM tool. [Refer

API Integration]

● Performing certain pre or post checks.[Troubleshooting logs can be collected

and appending these logs to ITSM tool.]

● Adding Error Handling for all the tasks and covering negative scenarios.

● Config retrievals and Correlation for alert enrichment and impact analysis.

Before we begin building the workflow, ATOM sends all the relevant alert details

[severity,device_id,ifDescr,acknowledged/resolved status,alertname,message,entity

affected,alert record id] as seed data whenever the workflow is triggered.These can be used as

process variables in the workflow and need not be user inputs.

Step-1: Check if the flapping interface is the management interface of the device. If yes, then

terminate the workflow without any action. We use a Decision gateway from our palette and

check if the interface name is among the standard management interfaces for devices.

26

ATOM Development Guide - Workflow

Step-2: Take an approval from the Network Admin to shutdown the interface. Create a User

form with a boolean input that will be used as a decision control to shut down the interface.

27

ATOM Development Guide - Workflow

Step-3: Once the Approval is received, check the device os type so that we generate

corresponding payload to be pushed to the device. For this step we use the already parsed basic

inventory content of the device stored in our yang engine via a restconf Operation.Details about

the java class and required params can be found in the appendix.Refer below screenshots for

any queries.

28

ATOM Development Guide - Workflow

Step-4: Shutdown the interface. For this step we use the existing credentials in the atom

database , login to the device via any transport [SSH/API] and execute the desired action. We

use a custom RPC which is available out of the box [workflow_utils:execute-command] for

implementing this step.Note that the same RPC can be used for executing any commands on

the device.[Pre post checks show /configuration commands]. XML parsing can be done via

groovy script as shown below.

29

ATOM Development Guide - Workflow

Step 5 & 6 : We can then wait for the Network Admin approval to unshut the interface after

they troubleshoot the issue.Once approved we rollback the shut commands and terminate the

flow. These steps are similar to approval and shutting down in implementation and can be copy

pasted and edited wherever necessary.

Place this developed workflow bpmn file in the vendor/workflow folder of the package

structure generated initially in section Creating workflow package using ATOM SDK

30

ATOM Development Guide - Workflow

Deploying & Operating on Workflows

Please refer to ATOM User/Admin Guide for details on Uploading, Deploying and Inspecting

Workflows.

Swagger/OpenAPI Integration

ATOM Open API integrations help easily build Integrations to Any IT System or Network

Technology. Atom utilizes RPC's to communicate via APIs with southbound systems in your

network. The RPC's are the implementation of controllers, orchestrators, and REST interfaces

that trigger specific actions in the platform, thereby keeping integrations(RPC's) separate from

the business logic(Atom workflow).

Atom allows you to extend your applications and support integrations with any entity from

within the workflow. These RPC catalog items in the workflow helps to optimize end-to-end IT

processes with Multi-vendor and multi-domain support, execute zero-touch automation, and

streamline operational processes.

Procedure to create External RPC

1. Navigate to Administration -> Plugins & Extensions → External Rest Services

2. Create service

31

ATOM Development Guide - Workflow

3. Create swagger

a. Select the created service then navigate to entities and click on swagger

b. Provide below details

i. API-Source (api-url/file)

ii. If ‘api-url’ then provide api-url link to fetch APIs

Ex - https://developer.atlassian.com/cloud/jira/platform/swagger.v3.json

iii. If ‘file’ then upload zip file(JSON file)

32

ATOM Development Guide - Workflow

4. Discover APIs for rest service

a. Select the created service then navigate to entities and click on swagger.

b. Select on three dotted lines and click on discover-apis RPC

c. After discover then we found below containers under discovered-data

i. APIs

ii. Paths

iii. Security

iv. Servers

v. tags

33

ATOM Development Guide - Workflow

5. Generate package for rest service

a. Select packaging-info container then click on generate package RPC

b. It generates a zip file and stores it in the grid.

c. If not provided any package-info details then automatically took service name as

module name and the default version is 1.0.0

d. If the user wants to provide module name and version then follow like below

34

ATOM Development Guide - Workflow

6. Upload package

a. Select packaging-info container then select generated-package and execute

upload-package RPC

b. It uploads the package into ATOM then should activate the package

7. Add Server

a. Provide server details under discovered-data → Server

35

ATOM Development Guide - Workflow

8. Runtime configuration
a. Provide preferred server
b. Runtime-config includes

i. Headers
ii. Parameters
iii. Security-parameters

36

ATOM Development Guide - Workflow

9. Finally observe all the RPCs in the workflow catalog and use it in the usecase
requirement.

37

ATOM Development Guide - Workflow

38

ATOM Development Guide - Workflow

Appendix

ATOM Workflow FAQs & Examples
Below we cover many FAQs and Examples of workflow for quick understanding of support and usage.

ATOM Workflow Activities

Timer

Timer can be configured in any of the following ways,

1) Time Date

2) Time Duration

3) Time Cycle

All the configurations are based on ISO 8601

We can use the following symbol and configuration in the properties panel.

1. Date

If we want to add wait between the tasks for a fixed time and date or start workflow after a

fixed time and date, then date can be used. The configuration would look like below, where we

can specify how long the timer should run before it is fired. In the example below, the timer will

run till 1st July 2019, 12:13:14 UTC timezone, after which it is fired & the next task is triggered.

39

https://en.wikipedia.org/wiki/ISO_8601

ATOM Development Guide - Workflow

2. Time Duration

If we want to add wait time between the tasks for a fixed time or start workflow after a fixed

time, then duration can be used. The configuration would look like below, where we can specify

how long the timer should run before it is fired. In the example below, the timer will run till 5

minutes, after which it is fired & the next task is triggered.

40

ATOM Development Guide - Workflow

3. Time Cycle

If we want to start a workflow periodically, then a cycle can be used. The configuration would

look like below, where we can specify repeating intervals. In the example below, workflow will

run every day starting from 29th July 2019, 04:10 PM IST timezone, without any end since R

does not have any value.

41

ATOM Development Guide - Workflow

Sub-process

In ATOM Workflow Modeler we can include a bpmn file which can be treated as a generic library

into another bpmn file.

For example:

There is a bpmn file which will add a vlan or delete vlan. It can be added into a complex

workflow where we have a vlan addition requirement serving as a reusability.

In the below example “DeleteSnmpConfiguration” is a subprocess which is a bpmn file where

icon representation will be as follows.

42

ATOM Development Guide - Workflow

How we map other bpmn file:

In the properties panel, we have to select bpmn file name from dropdown list as input for field

“Called Element”.

43

ATOM Development Guide - Workflow

Signal End Event & Boundary Event

Below we consider an example where Signal End Event & Boundary Events are used.

Example:

Here we are checking ‘Device Inventory’ of the device in a loop after device reboot operation.

1) If the ‘Device Inventory’ is successful either in one or two or more(up to 10) iterations,

then it will exit from the signal end event.

2) To execute another step first it will verify the signal boundary event. If both matches

then it will redirect to the next step else it will stop subprocess.

44

ATOM Development Guide - Workflow

A signal end event can be used to end a process instance using a named signal.

When deploying a process definition with one or more signal end events, the following

considerations apply:

The name of the signal end event must be unique across a given process definition, i.e., a

process definition must not have multiple signal end events with the same name. So first we

need to get the current process id and append to the signal end event name then it will be

unique.

45

ATOM Development Guide - Workflow

Same way we need to apply Boundary events also.

Signal End Event Symbol and definition in above example

46

ATOM Development Guide - Workflow

Signal Boundary Event symbol and definition in above example

47

ATOM Development Guide - Workflow

Decision box

The following symbol represents the decision making based on the conditional statements :

The conditions will be specified on the connectors from the decision box

For example:

48

ATOM Development Guide - Workflow

If we want to check whether the “payload” variable from User Inputs is not empty and take

decision accordingly like below

We will write condition on the connectors using condition-type as “expression” for both

connectors with respective conditions.

True case:

False case:

49

ATOM Development Guide - Workflow

If “payload” is not “None”, control will direct to “Create L3_port Configuration“ task otherwise

control will exit to the following exit symbol given.

Multi-instance parallel execution

Create a new task and then change type to ‘Call Activity’ and select ‘Parallel Multi Instance’

after that do call activity for any BPMN file.

The activity with the plus sign is called a collapsed subprocess.

The plus(+) sign suggests that you could click on it and make the subprocess expand.

The Parallel(|||) sign acts as multi-instance execution parallelly and each instance stored in a

separate process ids in the ATOM workflow instance.

Append the current process id wherever we are using signal end and boundary events.

If we run call activity with parallel then every subprocess is a unique automatically

Parent Process

50

ATOM Development Guide - Workflow

Sub Process

Refer below snapshot for multi-instance settings.

51

ATOM Development Guide - Workflow

New user input to existing inputs

1. Select “Create Task” and change type as “User Input”.

2. Click on “User Input” task.

3. In the “properties panel” on the right, click on the tab called “forms”.

4. Add new input from the user by clicking on the “+” sign in the form.

5. “Form Key” should always be selected as custom.

6. Provide the user input name you want in the ‘ID’ field, which will be displayed on ATOM

UI.

7. Select the “Type” for the user input from the dropdown.

8. Provide the field description you want in the ‘Label’ field, which will be displayed on the

ATOM UI.

9. Provide the default value if any.

10. This input value given for “ID” parameter can be referred/used all through the workflow

in Groovy/Javascript coding like following example snippet:

Groovy:

52

ATOM Development Guide - Workflow

def nhips =
execution.getVariable("ae_interface_name___unit_number___description___mtu");

Javascript:

var operation = execution.getVariable("community-string-to-be-deleted");

Add new XML tag to the existing payload

To add a new tag to the payload, we need to add the respective xml payload to the existing

payload in the task “User Inputs” .

Example:

<vlans>

<vlan>
<name>VXLAN-1005</name>
<vlan-id>1005</vlan-id>
<vxlan>

<vni>1005</vni>
<ingress-node-replication/>

</vxlan>
</vlan>

</vlans>

Here vlan-id can be input from the user .We will add user input field as explained in “Adding a

new user input:”

Note: When we are adding a new tag in payload, it should be supported in device models.

In the “input/output” section of “User Input“ task, get the data from the input variable given by

user and add it in the xml like follow:

Getting value:

def userVlan = execution.getVariable("vlan-id");

Form payload:

<vlans>
<vlan>

<name>’ +userVlan+ ‘</name>
<vlan-id>’+ userVlan+ ‘</vlan-id>
<vxlan>

<vni>’+ userVlan+ ‘</vni>
<ingress-node-replication/>

</vxlan>
</vlan>

</vlans>

53

ATOM Development Guide - Workflow

Now include the above modified payload and the code in the output parameter section in the

Input/Output tab of “User Inputs”.

Restconf & RPC call to ATOM

Any Restconf call to ATOM from Workflow is done by using the java class

“com.anuta.atom.workflow.delegate.AtomRestconfDelegate”

54

ATOM Development Guide - Workflow

On the contrary, if an RPC call is made to ATOM then we need to use the below java class:

“com.anuta.atom.workflow.delegate.AtomRpcDelegate”

POST needs the three parameters basically:

-> URL - used for POST or GET or UPDATE operations

-> ACTION - Can be one of POST/GET/UPDATE

-> PAYLOAD (In case of GET this would be not required)

55

ATOM Development Guide - Workflow

RESTCONF Representation

URL:

56

ATOM Development Guide - Workflow

ACTION:

PAYLOAD:

57

ATOM Development Guide - Workflow

Here we are forming a payload from the previous task “User Inputs” which is stored in output

variable “payload”. So we used “execution.getVariable("payload");” to get the content and send

it.

RPC Representation

URL:

58

ATOM Development Guide - Workflow

ACTION:

59

ATOM Development Guide - Workflow

PAYLOAD:

Output representation:

After the RESTCONF call the output will be stored in the variable “atom_restconf_output”.

On the contrary, for RPC calls the output will be stored in the variable “atom_rpc_output”.

60

ATOM Development Guide - Workflow

The variable which is at the end of the code block will be taken as the output variable of this

task to the next task. In the above example we got the content and it will be stored in the

output parameter “L3_Port_output”.

61

ATOM Development Guide - Workflow

How Workflow Can Program Against Various Events in ATOM

ATOM platform publishes the following types of events

Type Description How to Subscribe

1
NAAS-EVENT

ATOM will generate an event
based on the Rules defined
such as License expiry or User
login attempts and also
Device events such as Syslog,
SNMP traps are converted into
a slightly enhanced format
called NAAS-EVENT. Refer
Administration → System →
Rule Engine section in ATOM
User Guide for Event
generation.

A Delegate called AtomRpcDelegate is
available to subscribe for these alerts by
using /rule-engine:execute-rule RPC.

2
TSDB Alerts

Alert rules are submitted
beforehand to the time series
database(TSDB). When the
conditions satisfy TSDB will
publish an alert onto a
workflow engine.

A Delegate called
ATOMEventsSubscriptionDelegate is
available to subscribe for these alerts.

This serves cases where a workflow
needs to wait for a specific telemetry
alert.

A variation of this is possible. It is called
CLA (Closed Loop Automation) where
you can designate a process to be
executed upon the occurrence of an
alert.

Delegate Classes

Following Table summarizes various Network Automation activities and the target ATOM Delegate

Classes to be used.

Type of Workflow Activity Description Delegate To Use

Execute a Direct CLI Command

to Device

Direct CLI execution will bypass ATOM data

model validations.
AtomRpcDelegate

Execute a Direct API Command

to Device

Direct API execution will bypass ATOM data

model validations.
AtomRpcDelegate

62

ATOM Development Guide - Workflow

Execute an ATOM RPC

ATOM RPCs are Actions available in ATOM.

Example - Run a Diagnostic on the device

AtomRpcDelegate

Execute a RESTCONF against

ATOM Data Model based APIs

Activities that execute RESTCONF Operations

against YANG Data model driven features

like Device Model (Common Model, Native

Device Model, or OpenConfig), Service

Model or any other ATOM Features.

Example - Create-VRF, Create-VLAN, etc.,

AtomRestconfDelegate

Activity to Wait/Act on an Event

Activities involve waiting on a device event

or any other asynchronous notification.

Example - Waiting on SNMP Trap like Device

Reboot, Wait on Interface Utilization Alert

etc.,

AtomEventsSubscriptionDele

gate

Activity to integrate into a 3rd

Party connector

Activities that bypass ATOM Device

Management Layer and communicate with

an end-point directly with 3rd Party provider

APIs..

http-connector

AtomRpcDelegate

This Delegate helps in creating Workflow Activities that execute CLI/API operations against the device or

to invoke any ATOM RPCs. This bypasses ATOM Data Device/Other YANG Data model infrastructure like

validations etc.,

Parameter Sample-Value Description

Java Class com.anuta.atom.workflow.delegate.Ato

mRpcDelegate

Used to call Custom RPCs written by

user

atom_action POST Sets the method of the Custom RPCs

request

atom_url

/config-provision:execute-command To execute any command on the device

/config-provision:append-task-details To append commands or any output to

Task details for viewing in the specific

task being executed.

/rule-engine:execute-rule To execute a rule and wait for an event.

63

ATOM Development Guide - Workflow

/developerutils:invoke-rest-driver-rpc To interact with any API device such as

RESTCONF/SOAP/NETCONF

atom_payload <Valid XML Payload> Sets the corresponding payload of the

RPC call

(check ATOM API Development and

Testing Reference for the expected

payload based on RPC)

AtomRestconfDelegate

This Delegate helps in creating Workflow Activities that executes RESTCONF Operations against YANG

Data model driven features like Device Model (Common Model, Native Device Model, or OpenConfig),

Service Model or any other ATOM Features.

Parameter Sample-Value Description

Java Class com.anuta.atom.workflow.delegate.AtomRe

stconfDelegate

Used to execute atom defined

Restconf calls

atom_action GET/POST/UPDATE Set the method of the Restconf

request

atom_url /controller:services/poc-service Sets the URL of the Restconf call

(check ATOM API Development and

Testing Reference for the expected

URL based on YANG)

atom_payload <Valid XML Payload> Sets the payload of the Restconf Call

(check ATOM API Development and

Testing Reference for the expected

payload based on YANG)

NOTE: As the YANG models support is limited based on the vendor, we should make sure that Model or package is

available in ATOM to perform any CRUD operations using ATOMRestConfDelegate.

AtomEventsSubscriptionDelegate

Parameter Sample-Value Description

64

ATOM Development Guide - Workflow

Java Class com.anuta.atom.workflow.delegate.ATOMEv

entsSubscriptionDelegate

Used to wait for any event such as

SNMP trap, Telemetry alert or any

custom alert defined in ATOM

atom_notification_paylo

ad

<Valid XML Payload> Sets the corresponding payload of

the RPC call

atom_task_name <any string> Task name which resembles the alert

and shown as part of ATOM tasks

http-connector

Parameter Sample-Value Description

Connector ID http-connector Used to execute REST calls from

ATOM workflow to

external/third-party APIs

method GET/POST/PUT/PATCH Set the method of the REST request

url /controller:services/poc-service Sets the URL of the REST call

payload <Valid XML Payload> {Valid JSON Payload} Sets the payload of the REST Call

Other Headers as required by REST call can be added as input parameters like

Authentication-tokens, Accept and Content-type Headers.

Scripting support in ATOM workflow

ATOM workflow supports Groovy & Javascript as inline scripts and Python as external scripts.

Sample groovy/python code written as part of workflow development can be tested in the

workflow builder console.

65

ATOM Development Guide - Workflow

External Python Code Invocation

Procedure - 1 (Python2)

In the workflow Script Task by writing a Groovy code we can invoke the external python script

66

ATOM Development Guide - Workflow

Sample groovy code for invocation of external python script

import com.anuta.atom.workflow.scripts.Utils

def Command = '/usr/bin/python2.7

/tmp/atom/workflow/data/naas/ServicePackages/external-python/script_pyt
hon.py';

Utils.appendMessageToParentTask(execution,Command)

def sout = new StringBuffer();

def serr = new StringBuffer();

def process = Command.execute();

sleep(30000)

process.consumeProcessOutput(sout, serr);

sleep(30000)

process.waitForProcessOutput();

execution.setVariable("TLReturnValue", process.exitValue());

67

ATOM Development Guide - Workflow

println "process exitValue was : ${process.exitValue()}";

println "error stream was : \n${serr.toString()}";

println "output stream was : \n${sout.toString()}";

if (TLReturnValue == 0) {

Utils.setVariable(execution,"tenant_lifecycle_output", sout.toString())

}

else {

Utils.setVariable(execution,"tenant_lifecycle_output", serr.toString())

}

In the python file at the end just before the return statement, add a print statement of the

return value. That gets captured in sout. In case of any failures happening for python script

invocation it gets captured in serr.

Sample content of script_python.py

resp = 'Entered the python file\n'

print resp

We should place the script_python.py file inside the scripts folder of package zip and then

upload into ATOM and activate the package.

In this example, the package name is considered as external-python and
/tmp/atom/workflow/data/naas/ServicePackages/external-python is needed as the path before

your python file since the package once activated in ATOM will be placed in that path.

Procedure - 2 (Python3)

In the workflow Service Task by writing a Groovy code we can invoke the external python script

68

ATOM Development Guide - Workflow

The python3 support is provided as a separate container running inside the atom-agent pod. All
the packages deployed on the atom-agent will be synced to this container also. This will allow
us to bundle custom python code in these packages.

The clients can use the following rpcs:
1. invoke-python-function
2. invoke-python-file
3. invoke-python-snippet
4. invoke-script-file
5. invoke-script-snippet

Package structure

The python can be packaged as the regular atom package. The only extra configuration
required is the flag deploy-on-device-agent. This should be set to true.

Example:

package.xml:
<package>

<auto-start>true</auto-start>
<deploy-on-agent>true</deploy-on-agent>
<deploy-on-device-agent>true</deploy-on-device-agent>
<description>model-yang-model Service Package

@servicePackageDescription@</description>
<module-name>testpackage</module-name>
<name>testpackage</name>
<ncx-version>[10.0.0.0,)</ncx-version>
<order>-1</order>
<type>SERVICE_MODEL</type>
<version>10.0.0.1</version>
<donot-deploy-on-microservices>ATOM-Inventory-mgr</donot-deploy

-on-microservices>
<donot-deploy-on-microservices>ATOM-Workflow-engine</donot-depl

oy-on-microservices>
</package>

Python Code Execution

In this example, there is a package testpackage with the following structure:
testpackage

+ Scripts
+ test.py

69

ATOM Development Guide - Workflow

- ssh_and_exec
- test_json_function
- sleep

+ script.py

invoke-python-function (single string arg)

In this case, we can execute a python function using the ‘module name’ and the ‘function name’.

Arguments:
The arguments can be passed as an encoded json array (or map in case of kwargs). If there is
a single argument, we can pass it as a single argument.

Sample payload:

curl -u admin:admin -X POST -H 'Content-Type: application/xml' -H 'Accept: */*'
http://localhost:8080/restconf/operations/atom-scripting:invoke-python-function
--data-binary @/tmp/a.xml

<input>
<module-name>testpackage.test</module-name>
<function-name>ssh_and_exec</function-name>
<arg-json>"172.16.3.40"</arg-json>
<profile>Device_Communication3</profile>

</input>

In this example, we are invoking the function ‘ssh_and_exec’ from the module
‘testpackage.test’ module.

invoke-python-function (single int arg)

Sample payload:

curl -u admin:admin -X POST -H 'Content-Type: application/xml' -H 'Accept: */*'
http://localhost:8080/restconf/operations/atom-scripting:invoke-python-function
--data-binary @/tmp/b.xml

<input>
<module-name>testpackage.test</module-name>
<function-name>sleep</function-name>
<arg-json></arg-json>
<profile>Device_Communication3</profile>

</input>

In this example, we are invoking the function ‘sleep’ from the module testpackage.test module.

70

ATOM Development Guide - Workflow

invoke-python-snippet

This will allow us to invoke any arbitrary python code on the container

curl -u admin:admin -X POST -H 'Content-Type: application/xml' -H 'Accept: */*'
http://localhost:8080/restconf/operations/atom-scripting:invoke-python-snippet
--data-binary @/tmp/c.xml

<input>
<json-response>false</json-response>
<snippet><![CDATA[

import paramiko

def ssh_and_exec(hostname):
nbytes = 4096
port = 22
username = 'xxxxx'
password = 'xxxxxx'
command = 'show version'

client = paramiko.Transport((hostname, port))
try:

client.connect(username=username, password=password)

stdout_data = []
stderr_data = []
session = client.open_channel(kind='session')
try:

session.exec_command(command)
while True:

if session.recv_ready():
buf = session.recv(nbytes).decode('utf-8')
stdout_data.append(buf)

if session.recv_stderr_ready():
stderr_data.append(session.recv_stderr(nbytes))

if session.exit_status_ready():
break

print('stdout_data = %s' % (stdout_data))
print('exit status: %s' % (session.recv_exit_status()))
print(''.join(stdout_data))
print(''.join(stderr_data))

finally:
session.close()

finally:

71

ATOM Development Guide - Workflow

client.close()

ssh_and_exec('172.16.3.40')
]]></snippet>

<profile>Device_Communication3</profile>
</input>

invoke-python-file

This is another variation of the invoke-python-function where the user may want to organize the
code in different files. The file is supposed to implement a function ‘main’.

The usage would be:

curl -u admin:admin -X POST -H 'Content-Type: application/xml' -H 'Accept: */*'
http://localhost:8080/restconf/operations/atom-scripting:invoke-python-file
--data-binary @/tmp/d.xml

<input>
<package-name>testpackage</package-name>
<file-name>script</file-name>
<profile>Device_Communication3</profile>

</input>

Sample groovy code for invocation of external python script

Atom_url -> /atom-scripting:invoke-python-function

Atom_action -> POST

Atom_payload ->

import com.anuta.atom.workflow.scripts.Utils

import com.anuta.message.CommonMessageHelper

def opt = ['server': <server>, 'username': <username>, 'password': <password>]

def json = CommonMessageHelper.getGson().toJson(opt)

def payload =

String.format("""<input><module-name>testpackage.test</module-name><funct

ion-name>execute_cmd</function-name><arg-json

hidden="true"><![CDATA[${json}]]></arg-json><profile>Device_Communication3</pro

file></input>""", json)

payload.toString();

72

ATOM Development Guide - Workflow

Sample content of script_python.py

import paramiko

def execute_cmd(opt):

Get values

server = opt.get('server')

username = opt.get('username')

password = opt.get('password')

try:

initialize the SSH client

client = paramiko.SSHClient()

add to known hosts

client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

client.connect(hostname=server, username=username,

password=password)

commands = [

"esxcli network nic list",

"esxcli software vib list | grep esx-base"

]

execute the commands

for command in commands:

print(command)

stdin, stdout, stderr = client.exec_command(command, timeout=None)

print(stdout.read().decode())

err = stderr.read().decode()

if err:

print(err)

Close connection

client.close()

except Exception as e:

print(e)

73

ATOM Development Guide - Workflow

if __name__ == "__main__":

execute_cmd(opt)

To create a package refer ATOM SDK section and manual quick zip can be done by selecting the

files like below if needed.

Device Connection Timeout

Consider a scenario of a workflow task that has to copy the new software image from

tftp-server to the device.

If the workflow task times out while still downloading the image, where the command did

execute and complete on the device but the workflow timed out with below error.

Error in device command execution no response from the device 10.92.33.64 in 60 seconds.last

response from device : archive download-sw /imageonly /leave-old-sw /no-set-boot

tftp://153.6.140.225/c2960s-universalk9-tar.152-2.E8.tar

In the above, the limit of 60 sec is coming from the default value taken in the ATOM

credential-set attached to the device 10.92.33.64. So increase the value of parameter CLI

Configure Command TimeOut from 60 to 210 or so based on copy time taken in device.

Handling larger responses from device

Consider a scenario of verifying the MD5 of the new software image on the device.

Lets say you execute the command which computes the MD5 hash and capture that response.

Then if you try executing a .contains() function on the response to check whether the response

contains the expected MD5 hash or not, you may see it to be not working sometimes.

74

http://153.6.140.225/c2960s-universalk9-tar.152-2.E8.tar

ATOM Development Guide - Workflow

This problem can occur if the response (resp) output is more than 2000 chars and getting auto

converted as byte characters which would not match with md5 value which is type text. As a

general practice use below code snippet where Utils converts that byte chars to text and it

would work for matching with .contains()

getVariable()

import com.anuta.atom.workflow.scripts.Utils

75

ATOM Development Guide - Workflow

def resp = Utils.getVariable(execution,"atom_rpc_output")

def md5 = Utils.getVariable(execution,"md5_of_image");

def out = resp.contains(md5);

Out;

setVariable()

import com.anuta.atom.workflow.scripts.Utils

def resp=Utils.getVariable(execution,"atom_rpc_output")

Utils.setVariable(execution,"showipintbr", resp)

Commenting code

Groovy & Javascript:

Single line comments can be done using //

Multi-liner comments can be done using /* */

Error handling
To avoid 'Incident error occurred' while running workflow we can use try-catch in the script
block

This issue will see if not found variable declaration or some script issues

import com.anuta.atom.workflow.scripts.Utils;

try {

<logic block>

}

catch(Exception ex) {

def data = "Error in <task name>";

Utils.appendMessageToParentTask(execution,data,"true")

}

Custom form fieldTypes in ATOM workflow

Below section describes how Workflow end-user Input forms can be enhanced by using various
customer fieldTypes during workflow development.

1. An User can define workflow custom field types under the Metadata Properties section.

Add a property and fill 'Id' as 'fieldType' and 'Value' as one among the custom field types

possible for a given Type as described below.

76

ATOM Development Guide - Workflow

● Below are the workflow custom form field types supported under Type 'string'

Type: 'string' and Property: <Id: fieldType> <Value: below custom field types>

cidr

ipaddress

multiLineString

leafRef

multiSelect

Filter

whenstmt

● Below are the workflow custom form field types supported under type 'long'

Type: 'long' and Property: <Id: fieldType> <Value: below custom field types>

int8

int16

int32

int64

uint8

uint16

uint32

uint64

decimal64

Password

readonly

2. For grouping of fields in the form, you can use 'groupBy' as the property Id and Value as
required group name which shows up as Title

Examples for custom fieldTypes

1. Examples for cidr, ipaddress, multiLineString, int8, int64, uint8, decimal64, etc.

77

ATOM Development Guide - Workflow

2. Examples for leafRef, multiSelect
For these custom types we need to add extra properties named yangPath, bindLabel, bindValue

78

ATOM Development Guide - Workflow

yangPath → Defines the yang schema path

Eg: /controller:devices/device/interface:interfaces/interface

bindLabel → value (does not change)

bindValue → This is the yang key/non-key leaf in that specific yangPath

Note :

1) bindLabel and bindValue are required when we want to show other than key

values in the yang

2) As defined above bindValue will vary based on the key/non-key leaf in the

respective yangPath.

3) Schema-browser can help in understanding what is the yang key leaf for a

particular schema yangPath.

leafRef

79

ATOM Development Guide - Workflow

multiSelect

80

ATOM Development Guide - Workflow

3. Examples for properties dynamicValueStmt, whenstmt, readonly, password
For these custom types we need to add extra properties yangPath, bindLabel, bindValue

dynamicValueStmt - Fetching Interfaces under a selected device example

This helps in showing a filtered set of drop-down values dynamically at run-time based

on other form field values selected .

With bindValue and bindLabel

fieldType → leafRef

yangPath → /controller:devices/device/interface:interfaces/interface

81

ATOM Development Guide - Workflow

dynamicValueStmt →
/controller:devices/device[id=current()/device]/interface:interfaces/interface/long-nam

e

bindLabel → value

bindValue → long-name

The usage of current()/device indicates to filter interfaces drop-down values to show

only interfaces related to that particular device value given as input in other form fields.

If your other workflow form parameter name is device_id and we need interfaces to be

displayed for the previous chosen device_id form parameter, the dynamicValueStmt will

be below

dynamicValueStmt →
/controller:devices/device[id=current()/device_id]/interface:interfaces/interface/long-n

ame

In this example bindValue(long-name) is the key leaf of the

yangPath(/controller:devices/device/interface:interfaces/interface) and bindLabel(value)

is the value of the key element.

Without bindValue & bindLabel - Fetching devices present in a Resource pool example

82

ATOM Development Guide - Workflow

83

ATOM Development Guide - Workflow

dynamicValueStmt ->

/resourcepool:resource-pools/resource-pool[name=current()/resource_pool]/device/id

whenstmt

Using whenstmt a particular workflow form field can be hidden or displayed based on

other form field input given.

84

ATOM Development Guide - Workflow

Usage:

whenstmt → @<form-field-name> == <id of enum>

We cae use logical operators like ||, &&

Ex : Display form field only when enumeration is not equal to test2 and enumeration1 is

equal to Value_3brgg9e

@enumeration != "test2" && @enumeration1 == "Value_3brgg9e"

85

ATOM Development Guide - Workflow

86

ATOM Development Guide - Workflow

readonly

87

ATOM Development Guide - Workflow

Password

88

ATOM Development Guide - Workflow

Validations/Constraints for custom form fields

1. Validation for Type “string” can be added as below

89

ATOM Development Guide - Workflow

2. Validation for Type “long” can be added as below

90

ATOM Development Guide - Workflow

ATOM SDK

Introduction

ATOM Software Development Kit (SDK) provides a gradle-based plugin Package-Plugin jar that

serves as a backbone for any package development in ATOM. ATOM SDK provides CLI and also

integrates into IDE like IntelliJ. The plugin enables you to perform the following tasks of

Services/Drivers/MOP Development process in ATOM:

● Develop device packages

● Develop service packages (Includes Workflow/MOP)

● Compile, validate, generate device and service packages

● Load Packages to ATOM

● Upgrade of Packages

ATOM SDK folder hierarchy

Unzip the contents of the ATOM SDK zip to view the following folder structure:.

● doc - This folder contains README and the plugin documentation.
● examples - This folder has package zip files for different types of packages.
● packages - The core Package Plugin jar is part of the packages folder, which also has a

91

ATOM Development Guide - Workflow

few more library and base dependency packages required for development of new
devices and service packages.

● create.py, sdk.py, setup.py - These are the python files required for setting up device and
service packages environment.

Setting up the environment for ATOM Package Plugin

ATOM Package Plugin supports multiple gradle tasks that help create an environment suited for
developing packages. These tasks can be triggered from an IDE or CLI.

For the plugin tasks to run, ensure that the prerequisites are met with.

Prerequisites

To setup the environment, you must ensure that the following software requirements are met:

1. Python (2.7.12)
2. Python setup tools
3. Python Pip and Python modules bitarray, cmd2, TAPI, XEGER
4. Pyang(1.7.8). Refer Appendix section for the details of pyang installation.
5. JAVA (java 1.8 or greater)
6. Gradle

For information about installing gradle in your environment, visit http://gradle.org.

Setting up the environment in Ubuntu

1. Execute the following commands:

sudo apt-get install python python-setuptools
sudo easy_install pip
sudo pip install bitarray
sudo pip install cmd2
sudo pip install tapi
sudo pip install xeger
sudo pip install requests

2. Install Oracle JDK for Linux and unzip it.

Set the JAVA_HOME environment variable pointing to jdk directory.

3. Install gradle by executing the following command:

sudo apt-get install gradle

Setting up the environment in Windows

1. Download get-pip.py from https://bootstrap.pypa.io/get-pip.py
2. Execute the following command: python get-pip.py
3. Install Visual C++: https://www.microsoft.com/en-us/download/details.aspx?id=44266

92

https://docs.google.com/document/d/1sKPwssE-Euaa4fkMFJxmCxF9dSmz8d7VSePCRh0B4fo/edit#heading=h.5yufydbajnnm
http://gradle.org
https://bootstrap.pypa.io/get-pip.py
https://www.microsoft.com/en-us/download/details.aspx?id=44266

ATOM Development Guide - Workflow

4. Execute the following commands in the following order:

pip install setuptools --upgrade

pip install bitarray

pip install cmd2

pip install tapi

pip install xeger

pip install requests

5. Set the JAVA_HOME environment variable pointing to jdk directory.

Example: C:\Program Files\Java\jdk1.8.0_91

NOTE: Proper installation of gradle can be verified by using the command
gradle -version.

6 . Gradle Installation in windows

Step 1. https://gradle.org/releases/ get the latest Gradle distribution

Step 2. Unpack the distribution zip

Step 3. Configure your system environment Path variable

For e.x: C:\Gradle\gradle-4.10.2\bin.

Step 4. Verify your installation

Open a console (or a Windows command prompt) and run gradle -v to run gradle and
verify the version, e.g.:

$ gradle -v

Gradle 4.10.2

Setting up the repository for developing packages
In ATOM SDK, the sdk.py script sets up the SDK plugin environment for creating various
packages. To setup the repository of your choice, follow the steps as outlined below:

93

https://gradle.org/releases/

ATOM Development Guide - Workflow

1. Run the command: python sdk.py -s

This command runs the setup.py script which setups an environment for packages
repository.

setup.py - This script is used to setup repositories for core-dependent packages. The
core-dependent packages are present inside the “packages” folder and are necessary for
developing new device and service packages.

2. Select the repository of your choice.

You can either set up a local repository or can publish the core-dependent packages to
an artifact repository such as Nexus.

● Local Repository (Flat Directory Structure) : This option enables you to copy the
core-dependent packages present in the “packages” folder to a flat directory.

● The absolute path of this particular flat directory, for example, ‘/home/’ as shown below.
(verify that this folder is present already)

● Maven Artifact Repository : This option enables the user to copy the core-dependent
packages in the “packages” folder uploaded to the artifact repository, for example
Nexus.

94

ATOM Development Guide - Workflow

After setting up the repository, the script generates a config.xml file. This file contains
two tags:

a) repo-type : Maven or Flat Directory
b) repo-path : The absolute path or URL of the directory.

The metadata present in the config.xml is important to run the subsequent scripts.

Let us take the example of the selected repository as the Flat Directory(a local repository) and
the steps to be followed are illustrated below:

1. Enter the IP address of ATOM

If port is required for accessing the ATOM application then mention that as well. E.g:
172.16.1.10:30443, 127.0.0.1:8890

2. Enter the credentials to login into ATOM

95

ATOM Development Guide - Workflow

After the successful setup process, the following files and folders are generated :

● global.properties - contains the username, password and ATOM ip which will be used in
the package development process.

● config.xml - contains the information of repo-type and path to dependencies.
● dependencies - The dependency packages for development of device and service

models are copied to the destination folder of your choice.

IMPORTANT: Do not delete these files or folders.

96

ATOM Development Guide - Workflow

Migration of Workflows

As seen in the above section workflows are deployed in atom by packaging them with the help of sdk.We

can upgrade the package by changing the version in package.xml file. Atom automatically deploys the

latest workflow version.

Key Points to Remember

● Only the latest workflow deployed can be started from Atom.

● Old running workflow instances continue to run on older versions.

● Atom maintains the history of all old workflow instances in workflow instances tab.

ATOM API Development and Testing Reference

Please refer to section Tools for API Development and Testing in ATOM API Guide

References

Entry Description Reference

YANG
YANG is a data modeling language used to
model configuration data,state data,
Remote Procedure Calls, and notifications
for network management protocols.

https://tools.ietf.org/html/rfc

7950

RESTCONF
An HTTP-based protocol that provides a
programmatic interface for accessing data
defined in YANG

https://tools.ietf.org/html/rfc
8040

Gradle
Gradle helps teams build, automate and
deliver better software, faster.

https://gradle.org/

BPMN
Business Process Model and Notation
(BPMN) is the global standard for process
modeling and one of the most important
components of successful
Business-IT-Alignment.

https://www.omg.org/spec/B
PMN/2.0/

DMN
DMN is a modeling language and notation
for the precise specification of business
decisions and business rules. DMN is easily
readable by the different types of people
involved in decision management.

https://www.omg.org/dmn/

97

https://tools.ietf.org/html/rfc7950
https://tools.ietf.org/html/rfc7950
https://tools.ietf.org/html/rfc8040
https://tools.ietf.org/html/rfc8040
https://gradle.org/
https://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/spec/BPMN/2.0/

ATOM Development Guide - Workflow

98

