
ATOM Software Deployment Guide
version 11.8

ATOM Deployment Guide

Table of Contents

Purpose of this document 3

Intended Audience 3

Overview of ATOM Architecture 3

ATOM Deployment 4

Deployment scenarios 4

Local Deployment 4

Distributed Deployment 5

Target Infrastructure 6

On-Prem VMware ESXi, KVM 6

Cloud (GCP / AWS) 7

Requirements 7

Compute, Storage & Memory 7

Minimal Setup 8

Resilient HA Setup 8

Multi-site Deployment (Remote ATOM agent) 8

ATOM Multi Availability Zone HA Deployment 9

AWS Availability Zones 10

On Premises Across Data Centers / Locations 10

Network Requirements 11

ATOM related Ports/Protocols 11

Kubernetes related Ports/Protocols(on-prem) 13

Linstor related Ports/Protocols(on-prem) 13

IP Addressing Requirements 14

Kubernetes Cluster Requirements 14

Deployment scripts and files 15

ATOM Software Requirements 15

Deployment Images 15

Deployment scripts and files 15

Security Apps on VM nodes before ATOM install 16

Procedure for Deploying ATOM on-prem 16

New Kubernetes cluster 17

Minimal Setup deployment 21

Resilient Setup deployment 22

1 Zone or DC location 22

2 Zones or DC locations 24

1

ATOM Deployment Guide

3 Zones or DC locations(Recommended) 25

ATOM Deployment 27

Docker registry for Offline deployment 33

ATOM Remote Agent Deployment 48

Procedure of Deploying ATOM in GCP/GKE 49

Prerequisites 49

Deploying New K8s Cluster 50

Minimal Setup: 50

Resilient-HA Setup: 54

Deploying ATOM 59

Procedure of Deploying ATOM in AWS 60

Prerequisites 61

Deploying New K8s Cluster 63

Deploying ATOM 66

ATOM System Manager 67

Post Installation 70

AWS Specific 70

Security Group updates 70

Custom DNS name(CNAME) creation 70

ATOM Single Sign-On (SSO) 73

Google IdP 73

ATOM System Alerts 77

Troubleshooting & FAQ 82

List of useful commands 82

Cleanup of Deployment 83

Guidance on KVM 83

Migration of Storage 84

Steps to check logs in kibana 86

Steps to check load distribution in kafka for config parser 88

Logs for deployment failures 88

Appendix 88

AWS Connectivity Options 88

Custom SSL Certificate for ATOM 88

File Server for ATOM ZTP in AWS 89

2

ATOM Deployment Guide

Purpose of this document
This document is intended for deploying ATOM software in a Kubernetes environment.

Intended Audience
The procedure for installing the ATOM software is meant for administration teams responsible
for ATOM software deployment and operations.

ATOM deployment and operations requires hands-on experience installing Kubernetes clusters
and deployment using Helm charts. This document assumes that you are familiar with Docker,
containers, hypervisors, networking, and a good working knowledge of the operating systems.

Overview of ATOM Architecture
ATOM software is containerized and runs on a Kubernetes cluster. ATOM is provided as a
self-contained installation package with all the required components:

3

ATOM Deployment Guide

ATOM Deployment
ATOM deployment requires software components to be deployed in a Kubernetes environment.
Software will be distributed through a central repository.

Deployment scenarios
ATOM can be deployed in any of the following environments:

● On-Prem Kubernetes

● Google Cloud Platform (GCP)

● Amazon web service (AWS)

ATOM can be deployed with all the components at a single location or some of the components
distributed.

● Local Deployment

● Distributed Deployment

4

ATOM Deployment Guide

Local Deployment
Local deployment has all the ATOM software components deployed in a single Kubernetes
cluster.

Distributed Deployment
Distributed deployment allows ATOM software components to be distributed across multiple
logical or geographical locations. Distributed Deployment is applicable in the following
scenarios:

1. Remote Agent - In some scenarios network equipment is distributed across different
locations. ATOM Agent can be deployed close to the Network equipment for Security or
performance reasons.

2. Geo-redundant HA - ATOM Components can be deployed across multiple Locations/Sites
within the same region to provide Fault Tolerance against an entire Site/Location going
down. More details in ATOM Multi Availability Zone based HA.

5

ATOM Deployment Guide

Target Infrastructure
ATOM Can be deployed On Premises, Cloud or a combination as summarized in the Table below.

Environment Description Use case Prerequisites

Cloud (Amazon,
GCP or Similar)

Typically for Staging &
Production Deployments

Development
Stage
Production

Hardware Requirements

On Premises

Typically for Staging &
Production Deployments

Can be used for Multi user
shared Development as well

Development
Stage
Production

● On-Prem VMware ESXi, KVM
● Hardware Requirements

Cloud + On

Premise

ATOM Agent can be deployed

on-Premises while rest of

ATOM can be deployed in the

Cloud

Development
Stage
Production

● On-Prem VMware ESXi, KVM
● Hardware Requirements

On-Prem VMware ESXi, KVM
For the Kubernetes cluster deployed on ESXi, KVM etc., make sure required Compute, Storage &
Memory resources for VM nodes are allocated to have ATOM running on top of K8s cluster.

6

ATOM Deployment Guide

Anuta provides the OVA images for K8s Master and Worker nodes creation on ESXi, while the
OVA’s can be converted to Qcow2 images to deploy K8s Master and Worker nodes on KVM.

Cloud (GCP / AWS)
As cloud deployments on GCP/AWS offer different variants of node-types, make sure the Node
Type you selected matches the resources required for a Worker Node mentioned in Compute,
Storage & Memory requirements(Separate Master Node not required in GCP/AWS).
For GCP deployment a e2-highmem-4 or custom-4-32768-ext Node type would be required and
a r6i.xlarge Node type for AWS deployment.

Requirements
Before deploying ATOM in the kubernetes cluster, ensure that the following requirements are
satisfied:

1. Hardware Requirements
2. Network Requirements
3. Kubernetes Cluster Requirements
4. Software Requirements

Compute, Storage & Memory
Note:

SSD storage is mandatory as the ATOM’s databases and messaging services will perform
better over SSDs. When using local storage, it is recommended to use RAID10 based Storage
and provision VMs across multiple physical servers.

Overview

Type Minimal 1 DC Resilient 1 DC Resilient 2 DC Resilient 3 DC

Master Nodes
Per DC

3 3 2 and 1* 1

Master Specs 4 vCPU, 32GB
RAM, 300GB
SSD

4 vCPU, 8GB
RAM, 50GB SSD

4 vCPU, 8GB
RAM, 50GB SSD

4 vCPU, 8GB
RAM, 50GB SSD

Master Node
shares workload

Yes No No No

Worker Nodes
Per DC

1 9 4 3

7

ATOM Deployment Guide

Worker Specs 4 vCPU, 32GB
RAM, 300GB
SSD

4 vCPU, 32GB
RAM, 300GB
SSD

4 vCPU, 32GB
RAM, 300GB
SSD

4 vCPU, 32GB
RAM, 300GB
SSD

Total Nodes 4 12 11 12

Total IP
requirements

4+3(VIP)=7 12+3(VIP)=15 11+3(VIP)=14 12+3(VIP)=15

Refer IP Addressing Section for more details
*Refer 2 Sites Deployment section below

Minimal Setup
A Minimal setup that doesn’t support resiliency for ATOM components but has Kubernetes HA
needs a cluster (3 masters and 1 worker node) based out of ESXi with recommendations listed
below

Component Requirements Description

K8s Master - 3 nodes
For each node storage reserved in ESXi = 300 GB (SSD)

● CPU - 4 vCPU
● Memory - 32GB

K8s Workers - 1 node
For each node storage reserved in ESXi = 300 GB (SSD)

● CPU - 4 vCPU
● Memory - 32GB

Total IP Address: 4 IPs + 3 VIPs = 7 IPs. Refer IP Addressing Section for more details.
In this model K8s Master shares the workloads of ATOM components as well.

Resilient HA Setup
HA setup supporting resiliency with regards to one node or pod failures requires a Kubernetes
cluster (3 masters and 9 worker nodes) based out of ESXi with the following details

Component Requirements Description

K8s Master - 3 nodes
For each node storage reserved in ESXi = 50 GB (SSD)

● CPU - 4 vCPU
● Memory - 8GB

K8s Workers - 9 nodes
For each node storage reserved in ESXi = 300 GB (SSD)

● CPU - 4 vCPU
● Memory - 32GB

Total IP Address: 12 IPs + 3 VIPs = 15 IPs. Refer IP Addressing Section for more details.
In this model K8s Master shares the workloads of ATOM components as well.

8

ATOM Deployment Guide

Multi-site Deployment (Remote ATOM agent)
For a Multi-site distributed deployment, where the ATOM agent is deployed remotely, a single
ATOM agent (minimum) is deployed at each site in addition to the above setup choices. A
Virtual Machine with below minimum spec is required at each site location(s):

Component Requirements Description

1 Virtual Machine
Storage reserved in ESXi = 50 GB (SSD)
● CPU - 4 vCPU
● Memory - 8GB

Total IP Address: 1 IP. Refer IP Addressing Section for more details

ATOM Multi Availability Zone HA Deployment
ATOM supports deployment across multiple sites (aka Availability Zones) to support high
availability in the event of a site failure provided these sites are connected over low latency
links. This requires ATOM Components to be deployed across multiple sites or Availability Zones
(AZs). Availability Zones are available when workloads are provisioned in a Cloud Service
Provider. In this scenario, Kubernetes Cluster extends to multiple sites/Zones.

If ATOM is deployed in a single location, it is recommended that master nodes and worker
nodes are at least deployed on 3 separate physical servers. In such cases, ATOM will continue to
be available in the event of a single physical machine failure.
References:

● https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/RegionsAndAZs.html

● https://docs.microsoft.com/en-us/azure/availability-zones/az-overview

● https://cloud.google.com/compute/docs/regions-zones

Caveats:
1. Full Fault Tolerance against one Site failure requires ATOM deployment across 3

Locations/Sites.

2. In case only 2 Sites/Locations are available:

a. Full Fault Tolerance against one Site failure is supported, however, due to the quorum

requirements of some of the components like etcd, manual intervention may be

needed if the site that has majority is down.

3. Multi-region deployment is not supported, ATOM clusters can only be deployed across

multiple AZs within a region due to low latency requirements (<10 ms).

4. Some ATOM Components that support deployment across multiple Availability Zones or

sites are sensitive to Latency. In such scenarios, there will be an impact on application

performance or throughput

3 Sites Deployment:

For Each Site:

9

https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/RegionsAndAZs.html
https://docs.microsoft.com/en-us/azure/availability-zones/az-overview
https://cloud.google.com/compute/docs/regions-zones

ATOM Deployment Guide

Component Requirements Description

K8s Master - 1
nodes

For each node storage reserved in ESXi = 50 GB (SSD)
● CPU - 4 vCPU
● Memory - 8GB

K8s Workers - 3
nodes

For each node storage reserved in ESXi = 300 GB (SSD)
● CPU - 4 vCPU
● Memory - 32GB

Total IP Address across 3 sites: 12 IPs + 3 VIPs = 15 IPs. Refer IP Addressing Section for more
details

2 Sites Deployment:

Site-1:

Component Requirements Description

K8s Master - 2
nodes

For each node storage reserved in ESXi = 50 GB (SSD)
● CPU - 4 vCPU
● Memory - 8GB

K8s Workers - 4
nodes

For each node storage reserved in ESXi = 300 GB (SSD)
● CPU - 4 vCPU
● Memory - 32GB

Site-2:

Component Requirements Description

K8s Master - 1*
nodes

For each node storage reserved in ESXi = 50 GB (SSD)
● CPU - 4 vCPU
● Memory - 8GB

K8s Workers - 4
nodes

For each node storage reserved in ESXi = 300 GB (SSD)
● CPU - 4 vCPU
● Memory - 32GB

Total IP Address across 2 sites: 11 IPs + 3 VIPs = 14 IPs. Refer IP Addressing Section for more
details
*In site-1 disaster case site-2 needs two master nodes to be deployed instead of one. Hence the
required second master spec needs to be kept available ahead to handle disaster of site-1.

AWS Availability Zones
Refer to section Deploying New K8s Cluster for ATOM deployment in AWS which uses the
Availability Zones(AZ) during deployment.

10

ATOM Deployment Guide

On Premises Across Data Centers / Locations
For on-premises deployment of a Multi Availability Zone Model across different sites, latency
requirements have to be met.

Refer to section Deploying New Kubernetes Cluster for On Premises ATOM deployment which
creates K8s cluster among Master and Worker Nodes across the ESXis/Locations/DataCenters
having reachability.

Network Requirements

ATOM related Ports/Protocols
Each of the components of the ATOM application communicate with each other and external
using the following ports and protocols.

Wherever applicable, Firewall rules need to be updated to allow the communication between
external clients to ATOM or from ATOM software to network infrastructure or between ATOM
software components.

End Points Port Communication protocol Notes

Northbound communication [External clients, access to ATOM Portal, and other ATOM Mgmt Clients]

On-Prem Deployment of ATOM

ATOM Server (End
user Application-
NonSSO)

30443 HTTPS access
This will be the ATOM GUI
page served via HAproxy.

Single Sign-On 443 HTTPS access

For Single Sign-On login
over the VIP to access
ATOM, Grafana, Kibana,
Glowroot and
Kafka-Manager

Minio 31311 HTTP access
ATOM FileServer/Minio
Access

AWS Deployment of ATOM

Single Sign-On 443 HTTPS access

For Single Sign-On login
over the VIP to access
ATOM, Grafana, Kibana,
Glowroot and
Kafka-Manager

Minio 31311(NodePort) HTTP access
ATOM FileServer/Minio
Access

11

ATOM Deployment Guide

Inter-components communication [Applicable when ATOM agent and server components are deployed
separately with possibly a firewall in between]

ATOM Server - ATOM
Agent

7000 TCP/RSocket
Remote Agent
communicates with
Agent-proxy via agent-lb.

ATOM Agent -
Application
Performance
Monitoring

8181 TCP/Grpc
Remote Agent drops
performance metrics to
central APM

Southbound communication with network devices from ATOM Agent [Applicable when a Firewall is present
between ATOM agent and devices/NetworkElements]

ATOM Agent -
Network Elements

80
Hypertext transfer protocol
(HTTP) (IN/OUT)

OUT - Outbound
IN - Inbound

Different ports are used for
various use cases in ATOM.
Make sure PING
reachability is also there.

443
Hypertext transfer protocol
secure (HTTPS) (IN/OUT)

23
Telnet to network devices (TCP)
(OUT)

21 FTP to network device (TCP) (IN)

22
SSH to network devices (TCP)
(OUT)

161
SNMP to network devices (UDP)
(OUT)

162
SNMP Trap Listening (Server)
from network devices (UDP) (IN)

69
TFTP to network devices (UDP)
(IN)

514
SYSLOG Listening (Server) port
from network devices (UDP) (IN)

830
NETCONF to network
devices(TCP) (OUT)

12455
Telemetry Server for TCP
Communication (IN)

12456
Telemetry Server for UDP
Communication (IN)

12454 Telemetry GRPC Server (IN)

2055 Netflow UDP Server (IN)

Please ensure that public access is available on all the nodes. If public access cannot be provided across the nodes
then we need to consider an offline mode of installation of Atom Software by hosting Registry within your network.

12

ATOM Deployment Guide

Below are details of public domains which ATOM would access for pulling docker images and other binaries.

ATOM -> Required
Public Access Details
for Firewall if
applicable.

Port/Protocol Domain Name

443/https registry-1.docker.io

443/https quay.io

443/https gcr.io

443/https grafana.com

443/https codeload.github.com

443/https deb.debian.org

443/https registry.opensource.zalan.do

443/https ghcr.io

Kubernetes related Ports/Protocols(on-prem)
Below are Ports and Protocols which need to be allowed for Kubernetes cluster creation among
VM nodes. These need to be allowed in Firewall if in between VMs there is a Firewall when VMs
are spread across DCs etc..

Ports Protocol Notes

443 TCP kubernetes API server(HA
mode)

6443 TCP kubernetes API server

2379-2380 TCP etcd server client API

10250 TCP Kubelet API

10251 TCP Kube-scheduler

10252 TCP Kube-controller-manager

10255 TCP Kubelet

179 TCP Calico CNI

9100 TCP Prometheus

30000-32767 TCP NodePort services

13

ATOM Deployment Guide

6783 TCP Weaveport(deprecated)

Linstor related Ports/Protocols(on-prem)
ATOM uses linstor CSI driver as a storage provisioner on on-premises deployments. Below
specified Ports and Protocols need to be allowed for Kubernetes among VM nodes related to
Linstor. If the kubernetes cluster spreads across multiple DCs, these ports and protocols need to
be open on the DC firewalls as well.

Protocol: TCP, Ports: 3366-3367, 3370, 3376-3377, 7000-8000

IP Addressing Requirements
● One IP for each of the VM nodes.
● For Minimal and HA Master setup, when 3 Masters are used, reserve one extra IP(virtual

IP) belonging to the same subnet as other 3 Masters.
● Two IPs(virtual IP) for application internal load-balancing related to api-server & agents.
● IP addresses of all kubernetes nodes and virtual IPs should be in the same L2 segment.
● Subnet 10.200.0.0/16 subnet is used internally in the ATOM kubernetes cluster for

communication between microservices. If this subnet conflicts with any of the existing
network device IPs then a different subnet of size /16 shall be chosen. Update the file
wrapper.properties with the chosen subnet.

Kubernetes Cluster Requirements
ATOM Software needs to be installed on a dedicated kubernetes cluster and it can be deployed
on the following Kubernetes Distributions:

1. Amazon EKS
2. Google GKE
3. Upstream Kubernetes (https://github.com/kubernetes/kubernetes). Anuta provides

CentOS based OVAs/QCOW2 images. These are customized images that include all the
required software components. ATOM kubernetes cluster can only be installed on nodes
created by these images.

Any other Kubernetes Distribution or node OS distribution requires additional validation from
Anuta and requires significant lead time depending on the distribution.

Anuta provides deployment artifacts such as OVA/QCOW2 images for master and worker nodes,
scripts for creating the Kubernetes cluster and the container images required for deploying
ATOM.

For creating a Kubernetes cluster, check if the following requirements are satisfied:
1. All the hardware requirements defined in the section, Hardware Requirements are met.

14

https://github.com/kubernetes/kubernetes

ATOM Deployment Guide

2. Anuta provided OVAs (Centos server with pre-installed minimal packages) are already
imported into the vCenter template library.

3. Use Anuta provided QCOW2 images for deploying on KVM.
4. Static IPs are assigned to master and worker nodes

For bootstrapping the Kubernetes cluster, run the installation script. Installation script will need
inputs like VM IPs, Gateway, Netmask, DNS Server, NTP Server details and will install all the
required components such as

● Docker-ce
● Kubectl
● Helm

Once the Kubernetes cluster is formed, the ATOM deployment can be done subsequently. Refer
to the section, “Procedure for Deploying ATOM”.

Deployment scripts and files
To simplify the deployment of Kubernetes clusters in your environment, the required scripts and
files are organized into folders and are provided by Anuta Networks (in a zipped format).

Name of the file/folder Description

ATOM ATOM’s deployment files

node_setup.py Helper Script to bootstrap the nodes and install the atom software.

ATOM Software Requirements
Before proceeding with the deployment of ATOM application, you must have the following
software artifacts with you, obtained from Anuta Networks:

● Deployment Images
● Deployment scripts and files

Deployment Images
All the images required for deploying the components of ATOM will be pulled from the
repositories, created in Quay (https://quay.io/repository/).

The images have been tagged with a specific name, in the format given below:

quay.io/<organization>/<image name>:<tag>
Example: quay.io/release/atom-core:11.X.X.X.YYYYY

15

https://quay.io/repository/

ATOM Deployment Guide

Deployment scripts and files
Deploying ATOM in the local setup involves deploying the components required to build the
ATOM application using Helm charts. To simplify the deployment in your environment, the
required scripts and files are organized into folders and are provided by Anuta (in a zipped
format).

Name of the file/folder Description

ATOM ATOM’s deployment files

scripts Check and install kubernetes, docker, helm, python packages

The key folder ATOM, contains Helm charts, templates and the deployment scripts which will be
used for ATOM deployment. It has Helm charts like below

● databases -- contains the deployment files of all databases - PolicyDB and kafka
● atom -- contains multiple charts of individual microservice
● Infra -- contains charts related to infra components such as web-proxy, logstash,

glowroot etc.
● external-services -- optional services to access external services like databases, kafka

etc.
● grafana -- contains the helm charts for Grafana monitoring tool
● persistence -- contains the yaml files for creating persistent volumes
● tsdb-server and and tsdb-monitoring -- contains the helm charts for tsdb
● minio -- contains helm charts for minio/object storage
● sso -- contains helm charts for sso objects
● metallb - contains helm charts for providing virtual load balancing service

Each of the above folders contains the following:

1. README.md - Detailed readme information

2. chart.yaml - Contains the information about the chart

3. values.yaml - Default configuration values for this chart

4. templates - A directory of templates containing the template, which when combined

with values provided in the run-time generate a valid Kubernetes manifest file.

Security Apps on VM nodes before ATOM install
Users can install any security agents or clients on the VM nodes to meet their internal security
compliance policies. Example - Trend Micro. Users have to make sure that these agents or
clients shall not interfere with kubernetes processes and applications so that they are not
modified when the ATOM is in running state. For information on ports that are used by
Kubernetes and ATOM applications, please refer to section Networking Requirements.

16

https://www.trendmicro.com/en_in/business/products/hybrid-cloud/cloud-one-workload-security.html

ATOM Deployment Guide

Procedure for Deploying ATOM
on-prem
ATOM applications can be deployed on new Kubernetes with help of Deployment scripts and
files provided by Anuta.

New Kubernetes cluster

1. Verify that you have imported the shared Anuta OVA templates into your VMware
vCenter.

2. Create master nodes and worker nodes - See section requirements for more details
3. Login credentials for these nodes will be atom/secret@123. For any python script

executions use sudo for which password is again secret@123
NOTE: Do not login with root username into VMs

4. Run the node_setup.py which is present in the home directory using sudo privileges as

shown below [Note:This script needs to be run on each node individually]:

5. Enter 1 (master) or 2(worker) depending on the type of node that you want to provision.

Choose among the following:

17

ATOM Deployment Guide

1. Bootstrap Script: This script will initially help you set up basic Network

Connectivity, Hostname configuration and NTP settings.

2. Atom Installation: This script will be used to deploy k8s and bring up the atom

software at a later stage. Complete steps 4-7 before invoking this.

6. Enter 1 to proceed with the bootstrap function and select the complete fresh setup by

again choosing 1 as shown below:

7. Provide the following inputs as requested by the script:

1. Interface Details to be provisioned along with relevant CIDR info.

2. DNS Server Information

3. NTP Server Information

4. Hostname of the VM along with the hostname-ip to bind.

Refer the screenshot below:

18

ATOM Deployment Guide

Network Configuration Details

NTP Server Configuration Details

19

ATOM Deployment Guide

Hostname Configuration Details

Once the bootstrap is complete proceed with the next steps. [Note: Hostname changes

would be reflected on reboot only. Select yes to reboot if you wish to change the

hostname]

8. Make sure Internet access is there from all the nodes.
9. After completion of the bootstrap process with VM reload, we are now ready to begin

the atom installation process. Run the sudo python node_setup.py on Master Node for

ATOM Installation.

10. Since it is a fresh install where the K8s cluster was also not created before, you can
choose option1(Recommended) for Complete process of ZipDownload+K8s+ATOM
Deployment (or) you can choose separately option 2(Only Download), option 3(only K8s)
and option 5(ATOM).
In case K8s cluster is already setup, one can directly proceed with just Atom software
download and installation by selecting appropriate choices of 2, 5 respectively as in the
ATOM Deployment section.

11. To download the Atom Software Deployment zip provided by Anuta Networks Support
team we can use any of the methods as seen below:

● Wget: Utility for non-interactive download of files from the Web. User needs to
enter the link as input and the files would be downloaded and extracted
automatically.

20

ATOM Deployment Guide

● SCP: Securely transferring computer files between a local host and a remote host
based on the Secure Shell (SSH) protocol.

● Manual: User can use any standard file transfer protocol to transfer the files on
the home directory of the atom user.

12. After the ATOM deployment zip installation files are copied on the Master Node we can
begin with the K8s deployment. Depending on whether we want a minimal or resilient
setup provide the inputs as shown below:

Minimal Setup deployment
Choose 1 as Data center locations, select M for minimal size, provide VM IPs and Virtual
IPs info.

21

https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Secure_Shell

ATOM Deployment Guide

Resilient Setup deployment

1 Zone or DC location
Choose 1 as Data center locations, select R for resilient size, provide VM IPs and Virtual

IPs info. Virtual DCs(3 nos) are created to maintain resiliency in this scenario.

22

ATOM Deployment Guide

23

ATOM Deployment Guide

2 Zones or DC locations
Choose 2 as Data center locations, select R for resilient size, provide VM IPs and Virtual

IPs info. Input 2 master IPs for zone/DC 1 and 1 master IP for zone/DC 2. Provide 4 workers for
each zone as shown below.

24

ATOM Deployment Guide

3 Zones or DC locations(Recommended)
Choose 3 as Data center locations, select R for resilient size, provide VM IPs and Virtual

IPs info. Provide worker input as per zone/DC requirement.
Note: Provide DC input alongside as shown below

25

ATOM Deployment Guide

26

ATOM Deployment Guide

13. Above will create K8s cluster among Master and Worker Nodes spread across
Esxi/Locations which have reachability.

14. On a different shell terminal to master node, you can as well verify the nodes cluster

formation using the command “kubectl get nodes” and verify labels using the command

“kubectl get nodes --show-labels”
15. If the deployment model is selected as offline then provide the Registry IP address and

Project repo name as provided during the docker registry installation.

16. As now the Kubernetes cluster’s creation is done and it is ready for ATOM deployment. If

option1 is chosen in step8 then, “ATOM Deployment” will happen next in the process or

it can be invoked separately as well with option5.

ATOM Deployment
After ensuring that the prerequisites are taken care as described in the section, “Prerequisites
for Deploying ATOM”, perform the following steps:

1. For Minimal or Resilient HA setup, ensure that K8s cluster is formed and the worker
nodes are labelled properly as below using the command “kubectl get nodes
--show-labels”.

For Minimal setup and Resilient HA single DC setup.
elasticsearch,broker,zookeeper,object_store,default_agent,grafana,distributed_db,agent1,sec
urestore,northbound,thanos,monitoring_server,infra-tsdb

For2 DC/Zones:
Zone 1:

27

ATOM Deployment Guide

elasticsearch,broker,zookeeper,object_store,default_agent,grafana,distributed_db,agent1,sec
urestore,northbound,thanos,monitoring_server,infra-tsdb,topology.kubernetes.io/zone=dc-1
Zone 2:
elasticsearch,broker,zookeeper,object_store,default_agent,grafana,distributed_db,agent1,sec
urestore,northbound,thanos,monitoring_server,infra-tsdb,topology.kubernetes.io/zone=dc-2

For Resilient-HA setup in 3 DC/Zones:
Zone 1:
elasticsearch,broker,zookeeper,object_store,default_agent,grafana,distributed_db,agent1,sec
urestore,northbound,thanos,monitoring_server,infra-tsdb,topology.kubernetes.io/zone=dc-1
Zone 2:
elasticsearch,broker,zookeeper,object_store,default_agent,grafana,distributed_db,agent1,sec
urestore,northbound,thanos,monitoring_server,infra-tsdb,topology.kubernetes.io/zone=dc-2
Zone 3:
elasticsearch,broker,zookeeper,object_store,default_agent,grafana,distributed_db,agent1,sec
urestore,northbound,thanos,monitoring_server,infra-tsdb,topology.kubernetes.io/zone=dc-3

To label a node use below command:

kubectl label node <node-name> <label_name>=deploy

Note: Make sure you see label dc1, dc2 and dc3 appropriately based on the datacenter
where it is present for Resilient HA setup. For scale Worker Nodes also the labelling
approach remains the same as above.

2. To download the Atom Software Deployment zip(in case not done before) provided by
Anuta Networks Support team, you can use any of the download methods described in
the section New Kubernetes cluster step 9-11.

3. On the master node of the Kubernetes cluster, if option1 was chosen at step9 of New

Kubernetes cluster or if option5 chosen to trigger ATOM deployment separately, then all

of the ATOM application components/microservices will get deployed.

28

http://topology.kubernetes.io/zone=dc-1
http://topology.kubernetes.io/zone=dc-1
http://topology.kubernetes.io/zone=dc-1
http://topology.kubernetes.io/zone=dc-1
http://topology.kubernetes.io/zone=dc-1

ATOM Deployment Guide

NOTE: The order in which the ATOM components should be deployed is already
defined in the scripts.

OPTIONAL: If a different namespace (instead of atom namespace) needs to be used,
then do changes in functional_minimal.yaml file:

usernamespace:
enabled: false
namespace: <mynamespace>

namespace: <mynamespace>

A successful ATOM deployment of the components using Helm will have sample output
like below:

node resources met, proceeding..
master ip fetched from wrapper.properties172.16.18.5
quay
anuta docker registry secret was not found, creating it
helm check is successful

29

ATOM Deployment Guide

Folders creating done.
PV creating done.
All module check is successful
deploying Linstor charts using piraeus-operator
DB pods deployed
Helm chart haproxy got successfully deployed
Helm chart keycloak skipped
Helm chart infra-kibana got successfully deployed
Helm chart haproxy-gw got successfully deployed
Helm chart dashboard got successfully deployed
Helm chart oauth2 skipped
Helm chart lb got successfully deployed
Helm chart infra-grafana got successfully deployed
Helm chart infra-distributed-db-webconsole got successfully deployed
Helm chart infra-logstash got successfully deployed
Helm chart broker got successfully deployed
Helm chart zookeeper got successfully deployed
Helm chart infra-distributed-db-webagent got successfully deployed
Helm chart infra-log-forwarder got successfully deployed
Helm chart elasticsearch-config got successfully deployed
Helm chart schema-repo got successfully deployed
Helm chart infra-elasticsearch got successfully deployed
Helm chart infra-distributed-db got successfully deployed
returncode is 0
DB pods deployed
Helm chart infra-tsdb-monitoring got successfully deployed
Helm chart minio got successfully deployed
Helm chart thanos got successfully deployed
Helm chart atom-workflow-engine got successfully deployed
Helm chart atom-inventory-mgr got successfully deployed
Helm chart atom-isim got successfully deployed
Helm chart kafka-operator got successfully deployed
Helm chart atom-pnp-server got successfully deployed
Helm chart atom-core got successfully deployed
Helm chart atom-qs got successfully deployed
Helm chart atom-agent-proxy got successfully deployed
Helm chart atom-scheduler got successfully deployed
Helm chart atom-sysmgr got successfully deployed
Helm chart atom-agent got successfully deployed
Helm chart atom-telemetry-engine got successfully deployed
Helm chart atom-ml got successfully deployed
Helm chart atom-frontend got successfully deployed
Helm chart infra-glowroot got successfully deployed
Helm chart burrow got successfully deployed
Helm chart jaeger-tracing got successfully deployed
Helm chart kafka-control got successfully deployed
Helm chart kafka-manager got successfully deployed
Helm chart infra-web-proxy got successfully deployed
Helm chart infra-tsdb got successfully deployed
Helm chart modsecurity got successfully deployed
Supplied atom as namespace
SSO URLS for application endpoints are:
ATOM UI ==> https://172.16.18.20
KIBANA UI ==> https://172.16.18.20/kibana/
GRAFANA UI ==> https://172.16.18.20/grafana/
GLOWROOT UI ==> https://172.16.18.20/glowroot/

30

ATOM Deployment Guide

K8S UI ==> https://172.16.18.20/k8s/
KAFKA MANAGER UI ==> https://172.16.18.20/kafka-manager/
KEYCLOAK_URL ==> https://172.16.18.20/auth
TSDB_URL ==> https://172.16.18.20/prometheus
THANOS_URL ==> https://172.16.18.20/thanos
TSDB_MONITORING_URL ==> https://172.16.18.20/prometheus-atom
REMOTE AGENT URL ==> :7000
ZTP URL ==>

('atom_fqdn = ', '')
sh /home/atom/atom-deployment/scripts/get_urls.sh atom
172.16.18.18
https://172.16.18.18:
Keycloak is active
Fetching token from admin-cli
eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICJPUmg4MWFSNUpOS21nelB6
aFNmSEVlYnQ5ekZRVVYyaVFwWG5hYmhLNERRIn0.eyJleHAiOjE2NDU1MDQ5NjYsImlhdCI6
MTY0NTUwNDkwNiwianRpIjoiZjQ2ZTBlZGYtM2FkMi00ODJmLTljYzktY2I2YzcyNzA4YTM1
IiwiaXNzIjoiaHR0cHM6Ly8xNzIuMTYuMTguMTgvYXV0aC9yZWFsbXMvbWFzdGVyIiwic3Vi
IjoiNmUzYWEyZmItOGI1NS00ZjlmLTliMWQtZjFmZTBmZTdkZjBiIiwidHlwIjoiQmVhcmVy
IiwiYXpwIjoiYWRtaW4tY2xpIiwic2Vzc2lvbl9zdGF0ZSI6IjkxMzliOTQzLWI5NjAtNGJl
NS05MWYzLTI3ZGE1NmIzMzgyNiIsImFjciI6IjEiLCJzY29wZSI6ImVtYWlsIHByb2ZpbGUi
LCJlbWFpbF92ZXJpZmllZCI6ZmFsc2UsInByZWZlcnJlZF91c2VybmFtZSI6ImFkbWluIn0.
Shom2O7DkYkS9aI0MsdUitY7mSlDHUtSgsMiZiWwPNHvionKLFNVeE4ynhP8sl3k3KLZQ5UJ
MbhORvKNorxLQqCLIZNZONhtFnxEY9OQLXQKkE29xORCPkpj1ooDISEU2Wj5quLkEpSh8BsP
pN9bCcNeJKqabwbIBCdo8wGNFa8WrL5M34jNIMmKR-h2e6UrZMX9LpOpKY8B5z6w7kRQ3LwK
f700etth24WMw4qlYkdYlk57OFoPcWa8PvcSA0_j52iva1Bv4vVE4EPfeR46bbhSillngBTS
WA5ycuhyZPcwHJOpNE3GzkgCKeyygz9us7_BwYFLQ2cwS2Q13Qn-lQ
Endpoints reachability check in progress...
Endpoints reachability check in progress...
Endpoints reachability check in progress...
Endpoints reachability check in progress...
Endpoints reachability check in progress...
Endpoints reachability check in progress...
Endpoints reachability check in progress...
Endpoints reachability check in progress...
Endpoints reachability check in progress...
Endpoints reachability check in progress...
Endpoint Status
THANOS_URL REACHABLE
GLOWROOT UI REACHABLE
KEYCLOAK_URL REACHABLE
TSDB_MONITORING_URL REACHABLE
K8S UI REACHABLE
GRAFANA UI REACHABLE
KIBANA UI REACHABLE
ATOM UI REACHABLE
KAFKA MANAGER UI NOT REACHABLE
TSDB_URL REACHABLE

31

ATOM Deployment Guide

4. After completing atom-deployment.Again run node_setup.py script and select 6th
option and give master ip for checking basic functionality ,next select 7th option if you
want to change passwords.

5. A summary of access URLs for various components deployed will be displayed after

installation and if required can be obtained anytime by executing following command in

scripts folder

cd scripts
sh get_urls.sh

The output will be similar to below

Supplied atom as namespace
SSO URLS for application endpoints are:
ATOM UI ==> https://172.16.18.18
KIBANA UI ==> https://172.16.18.18/kibana/
GRAFANA UI ==> https://172.16.18.18/grafana/
GLOWROOT UI ==> https://172.16.18.18/glowroot/
K8S UI ==> https://172.16.18.18/k8s/
KAFKA MANAGER UI ==> https://172.16.18.18/kafka-manager/
KEYCLOAK_URL ==> https://172.16.18.18/auth
TSDB_URL ==> https://172.16.18.18/prometheus
THANOS_URL ==> https://172.16.18.18/thanos
TSDB_MONITORING_URL ==> https://172.16.18.18/prometheus-atom

32

ATOM Deployment Guide

Docker registry for Offline deployment
ATOM can be deployed offline using the locally hosted docker registry. Docker images have to
be pulled from a locally available registry to the respective nodes for atom deployment.

Verify that you have imported the shared Anuta docker-registry OVA template into your

VMware vCenter.

1. The specs for docker registry VM will be 4CPU/32GB RAM/300GB SSD/1 NIC

2. Log into the VM using default creds atom/secret@123.

3. For bootstrapping the node with basic Interface, DNS and NTP configs run the

node_setup.py which is present in the home directory using sudo privileges as described

in the section New Kubernetes cluster

4. After completion of the bootstrap process we are now ready to begin the Docker registry

installation process. Run node_setup.py script and select Docker registry installation by

entering 2 when prompted for choice.

5. For a fresh install we can select “Complete Docker Registry Installation for offline

Deployment” option by entering 1. If required we can perform each of the other steps in

the exact order individually.In case of failure, the user can retry by giving appropriate

options where the process had failed.

6. Provide the IP option using “1” or use hostname if they can be resolved. Give the project

name which would serve the purpose of repo name.It needs to be provided at a later

stage so do make note of it.

33

ATOM Deployment Guide

Default login for registry will be admin/admin (http:<registry-ip>)
Output of the above process may take time and would look as follows:

Redirecting to /bin/systemctl restart docker.service
harbor/harbor.v2.2.1.tar.gz
harbor/prepare
harbor/LICENSE
harbor/install.sh
harbor/common.sh
harbor/harbor.yml.tmpl
prepare base dir is set to /home/atom/harbor
Unable to find image 'goharbor/prepare:v2.2.1' locally
docker: Error response from daemon: Get https://registry-1.docker.io/v2/: dial tcp:
lookup registry-1.docker.io on 8.8.8.8:53: read udp
172.16.26.105:53734->8.8.8.8:53: i/o timeout.
See 'docker run --help'.

[Step 0]: checking if docker is installed ...

Note: docker version: 20.10.5

[Step 1]: checking docker-compose is installed ...

Note: docker-compose version: 1.25.5

[Step 2]: loading Harbor images ...
23e1126e5547: Loading layer [==>]
34.51MB/34.51MB
0a791fa5d10a: Loading layer [==>]
6.241MB/6.241MB
478208477097: Loading layer [==>]
4.096kB/4.096kB
a31ccda4a655: Loading layer [==>]
3.072kB/3.072kB
70f59ceb330c: Loading layer [==>]
28.3MB/28.3MB
ef395db1a0f0: Loading layer [==>]
11.38MB/11.38MB
fb2e075190ca: Loading layer [==>]
40.5MB/40.5MB
Loaded image: goharbor/trivy-adapter-photon:v2.2.1
c3a4c23b7b9c: Loading layer [==>]
8.075MB/8.075MB
00f54a3b0f73: Loading layer [==>]
3.584kB/3.584kB
afc25040e33f: Loading layer [==>]
2.56kB/2.56kB

34

ATOM Deployment Guide

edb7c59d9116: Loading layer [==>]
61.03MB/61.03MB
e5405375a1be: Loading layer [==>]
61.85MB/61.85MB
Loaded image: goharbor/harbor-jobservice:v2.2.1
ab7d4d8af822: Loading layer [==>]
4.937MB/4.937MB
8eb4015cb760: Loading layer [==>]
4.096kB/4.096kB
4be492c354d6: Loading layer [==>]
3.072kB/3.072kB
ea3e1353d3dd: Loading layer [==>]
18.99MB/18.99MB
20f1e7953be4: Loading layer [==>]
19.81MB/19.81MB
Loaded image: goharbor/registry-photon:v2.2.1
e359335d9d06: Loading layer [==>]
4.931MB/4.931MB
573c32deac46: Loading layer [==>]
5.926MB/5.926MB
4462384e04f0: Loading layer [==>]
14.86MB/14.86MB
93886c98b389: Loading layer [==>]
27.36MB/27.36MB
481cc53e87f1: Loading layer [==>]
22.02kB/22.02kB
34ddb9fc83e7: Loading layer [==>]
14.86MB/14.86MB
Loaded image: goharbor/notary-server-photon:v2.2.1
f948e4c0caca: Loading layer [==>]
6.783MB/6.783MB
ec1372991658: Loading layer [==>]
9.097MB/9.097MB
1ef3f81e1f85: Loading layer [==>]
1.691MB/1.691MB
Loaded image: goharbor/harbor-portal:v2.2.1
46d871958df2: Loading layer [==>]
8.076MB/8.076MB
03e260326ab5: Loading layer [==>]
3.584kB/3.584kB
6c53b42399ce: Loading layer [==>]
2.56kB/2.56kB
f0859eadaaf8: Loading layer [==>]
53.27MB/53.27MB
48e28227863e: Loading layer [==>]
5.632kB/5.632kB
af9d6bf9cb83: Loading layer [==>]
90.11kB/90.11kB
67d7d6940a94: Loading layer [==>]
11.78kB/11.78kB
07662a79fbff: Loading layer [==>]
54.2MB/54.2MB
6d0fecda12d9: Loading layer [==>]
2.56kB/2.56kB
Loaded image: goharbor/harbor-core:v2.2.1

35

ATOM Deployment Guide

324f82f1e2f8: Loading layer [==>]
35.95MB/35.95MB
e13d3998e590: Loading layer [==>]
3.072kB/3.072kB
3735726c1403: Loading layer [==>]
59.9kB/59.9kB
3da48fc3af0e: Loading layer [==>]
61.95kB/61.95kB
Loaded image: goharbor/redis-photon:v2.2.1
6e7fceefe62a: Loading layer [==>]
4.931MB/4.931MB
0148fb852b85: Loading layer [==>]
5.926MB/5.926MB
fcfbd97f83cd: Loading layer [==>]
13.33MB/13.33MB
9d99acddd376: Loading layer [==>]
27.36MB/27.36MB
cb7528f98674: Loading layer [==>]
22.02kB/22.02kB
816b6ef47521: Loading layer [==>]
13.33MB/13.33MB
Loaded image: goharbor/notary-signer-photon:v2.2.1
ece94fe3fa7d: Loading layer [==>]
4.936MB/4.936MB
361117114ba4: Loading layer [==>]
62.71MB/62.71MB
8bcb062f0929: Loading layer [==>]
3.072kB/3.072kB
4486548b56a1: Loading layer [==>]
4.096kB/4.096kB
b3660e86e8c2: Loading layer [==>]
63.53MB/63.53MB
Loaded image: goharbor/chartmuseum-photon:v2.2.1
ad64336d0e51: Loading layer [==>]
77.49MB/77.49MB
3f760c535efc: Loading layer [==>]
54.66MB/54.66MB
ce6390c67a6a: Loading layer [==>]
2.56kB/2.56kB
e56ca8f2c586: Loading layer [==>]
1.536kB/1.536kB
56b738911601: Loading layer [==>]
18.43kB/18.43kB
14c3e8748a68: Loading layer [==>]
4.067MB/4.067MB
5172b1fbd671: Loading layer [==>]
278.5kB/278.5kB
Loaded image: goharbor/prepare:v2.2.1
5d79e0b031e3: Loading layer [==>]
76.08MB/76.08MB
ae7c7f0e9c04: Loading layer [==>]
3.584kB/3.584kB
85ec797b97cb: Loading layer [==>]
3.072kB/3.072kB
0b1fe21c8422: Loading layer [==>]
2.56kB/2.56kB

36

ATOM Deployment Guide

9dac10dcafad: Loading layer [==>]
3.072kB/3.072kB
672cf3cb855c: Loading layer [==>]
3.584kB/3.584kB
1fbe5ad20ece: Loading layer [==>]
12.29kB/12.29kB
Loaded image: goharbor/harbor-log:v2.2.1
d4b2501bd60f: Loading layer [==>]
8.076MB/8.076MB
b35ba3bc6760: Loading layer [==>]
17.61MB/17.61MB
aad9bed872f0: Loading layer [==>]
4.608kB/4.608kB
5233fbaf23ed: Loading layer [==>]
18.43MB/18.43MB
Loaded image: goharbor/harbor-exporter:v2.2.1
e92fd18cc2cd: Loading layer [==>]
6.783MB/6.783MB
Loaded image: goharbor/nginx-photon:v2.2.1
43cfa27fb7b9: Loading layer [==>]
63.78MB/63.78MB
381a3761198d: Loading layer [==>]
80.93MB/80.93MB
575a4ef00206: Loading layer [==>]
6.144kB/6.144kB
d283c20b6814: Loading layer [==>]
2.56kB/2.56kB
5ee933fe737a: Loading layer [==>]
2.56kB/2.56kB
f666b92ffe52: Loading layer [==>]
2.56kB/2.56kB
348980754dc5: Loading layer [==>]
2.56kB/2.56kB
ad39d2f7b9b8: Loading layer [==>]
11.26kB/11.26kB
Loaded image: goharbor/harbor-db:v2.2.1
dbebf4744f06: Loading layer [==>]
4.937MB/4.937MB
b8e081520905: Loading layer [==>]
4.096kB/4.096kB
442f06402474: Loading layer [==>]
18.99MB/18.99MB
da1eb793d5c9: Loading layer [==>]
3.072kB/3.072kB
2906b858cfe3: Loading layer [==>]
25.32MB/25.32MB
795547d15c57: Loading layer [==>]
45.14MB/45.14MB
Loaded image: goharbor/harbor-registryctl:v2.2.1

[Step 3]: preparing environment ...

[Step 4]: preparing harbor configs ...
prepare base dir is set to /home/atom/harbor

37

ATOM Deployment Guide

WARNING:root:WARNING: HTTP protocol is insecure. Harbor will deprecate http
protocol in the future. Please make sure to upgrade to https
Generated configuration file: /config/portal/nginx.conf
Generated configuration file: /config/log/logrotate.conf
Generated configuration file: /config/log/rsyslog_docker.conf
Generated configuration file: /config/nginx/nginx.conf
Generated configuration file: /config/core/env
Generated configuration file: /config/core/app.conf
Generated configuration file: /config/registry/config.yml
Generated configuration file: /config/registryctl/env
Generated configuration file: /config/registryctl/config.yml
Generated configuration file: /config/db/env
Generated configuration file: /config/jobservice/env
Generated configuration file: /config/jobservice/config.yml
Generated and saved secret to file: /data/secret/keys/secretkey
Successfully called func: create_root_cert
Generated configuration file: /compose_location/docker-compose.yml
Clean up the input dir

[Step 5]: starting Harbor ...
Creating network "harbor_harbor" with the default driver
Creating harbor-log ... done
Creating harbor-portal ... done
Creating redis ... done
Creating harbor-db ... done
Creating registryctl ... done
Creating registry ... done
Creating harbor-core ... done
Creating harbor-jobservice ... done
Creating nginx ... done
✔ ----Harbor has been installed and started successfully.----
WARNING! Using --password via the CLI is insecure. Use --password-stdin.
WARNING! Your password will be stored unencrypted in /root/.docker/config.json.
Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-store

Login Succeeded
[atom@docker ~]$

7. Next we need to download the Atom deployment.zip and images.zip provided by Anuta

Networks team on the docker registry. We can use any of the methods as shown below:

38

ATOM Deployment Guide

● Wget: utility for non-interactive download of files from the Web. User needs to
enter the link as input and the files would be downloaded and extracted
automatically.

● SCP: securely transferring computer files between a local host and a remote host
based on the Secure Shell (SSH) protocol.

● Manual: User can use any standard file transfer protocol to transfer the files on
the home directory of the atom user.

Note : Wget option may not work for offline deployment since we do not have
public connectivity .

8. To download the images.zip provided by Anuta Networks team we can follow the similar
procedure as stated above.Please note that the images.zip needs to be copied into the
images folder in the home directory.]

[Troubleshooting: If the images.zip file is not found it is most likely that the folder must
have been cleaned at the start of the node_setup script.In this case copy the images.zip
again when prompted to do so.]

9. Give registry IP to be used and project name/repo name as provided earlier when

setting up the registry.

39

https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Secure_Shell

ATOM Deployment Guide

10. You will observe the following script will execute and output as follows:

“sudo python docker-registry.py -r <IP/hostname of host> -p <Repository name given

during installation> -t push -v <ATOM BUILD VERSION> ”.

Enter the Registry IP:172.16.26.5
Enter the Repo/Project name:release
INFO: Debug logs are sent to atom-registry.log
INFO: ['docker-registry.py', '-r', '172.16.26.5', '-p', 'release', '-t',
'push', '-v', '11.3.0.0.48817']
INFO: Push task is selected
INFO: tar -xf images/databases.tgz
INFO: docker load -qi images/databases/infra-broker:7.0.1.12242021.tar
INFO: docker load -qi images/databases/kafka-operator:0.4.tar
INFO: docker load -qi
images/databases/infra-elasticsearch:7.10.2_with_alerting_reporting_plugi
n.tar
INFO: docker load -qi images/databases/infra-filebeat:770.tar
INFO: docker load -qi
images/databases/infra-distributed-db-webconsole:0.2.tar
INFO: docker load -qi
images/databases/infra-kafka-prometheus-jmx-exporter:0.11.0.tar
INFO: docker load -qi
images/databases/infra-distributed-db-webagent:0.4.tar
INFO: docker load -qi images/databases/postgres-operator:v1.6.3.tar
INFO: docker load -qi images/databases/spilo-13:2.0-p7.tar
INFO: docker load -qi images/databases/infra-logstash:772_150321_v2.tar
INFO: docker load -qi images/databases/infra-zookeeper:7.0.1.12242021.tar
INFO: docker load -qi images/databases/elasticsearch-config:0.5.tar
INFO: docker load -qi images/databases/infra-distributed-db:8.8.7.tar
INFO: docker tag quay.io/release/infra-broker:7.0.1.12242021
172.16.26.5/release/infra-broker:7.0.1.12242021
INFO: docker tag quay.io/release/kafka-operator:0.4
172.16.26.5/release/kafka-operator:0.4
INFO: docker tag
quay.io/release/infra-elasticsearch:7.10.2_with_alerting_reporting_plugin
172.16.26.5/release/infra-elasticsearch:7.10.2_with_alerting_reporting_pl
ugin
INFO: docker tag quay.io/release/infra-filebeat:770
172.16.26.5/release/infra-filebeat:770
INFO: docker tag quay.io/release/infra-distributed-db-webconsole:0.2
172.16.26.5/release/infra-distributed-db-webconsole:0.2
INFO: docker tag
quay.io/release/infra-kafka-prometheus-jmx-exporter:0.11.0
172.16.26.5/release/infra-kafka-prometheus-jmx-exporter:0.11.0
INFO: docker tag quay.io/release/infra-distributed-db-webagent:0.4
172.16.26.5/release/infra-distributed-db-webagent:0.4

40

ATOM Deployment Guide

INFO: docker tag
registry.opensource.zalan.do/acid/postgres-operator:v1.6.3
172.16.26.5/release/postgres-operator:v1.6.3
INFO: docker tag registry.opensource.zalan.do/acid/spilo-13:2.0-p7
172.16.26.5/release/spilo-13:2.0-p7
INFO: docker tag quay.io/release/infra-logstash:772_150321_v2
172.16.26.5/release/infra-logstash:772_150321_v2
INFO: docker tag quay.io/release/infra-zookeeper:7.0.1.12242021
172.16.26.5/release/infra-zookeeper:7.0.1.12242021
INFO: docker tag quay.io/release/elasticsearch-config:0.5
172.16.26.5/release/elasticsearch-config:0.5
INFO: docker tag quay.io/release/infra-distributed-db:8.8.7
172.16.26.5/release/infra-distributed-db:8.8.7
INFO: docker push 172.16.26.5/release/infra-broker:7.0.1.12242021
INFO: docker push 172.16.26.5/release/kafka-operator:0.4
INFO: docker push
172.16.26.5/release/infra-elasticsearch:7.10.2_with_alerting_reporting_pl
ugin
INFO: docker push 172.16.26.5/release/infra-filebeat:770
INFO: docker push 172.16.26.5/release/infra-distributed-db-webconsole:0.2
INFO: docker push
172.16.26.5/release/infra-kafka-prometheus-jmx-exporter:0.11.0
INFO: docker push 172.16.26.5/release/infra-distributed-db-webagent:0.4
INFO: docker push 172.16.26.5/release/postgres-operator:v1.6.3
INFO: docker push 172.16.26.5/release/spilo-13:2.0-p7
INFO: docker push 172.16.26.5/release/infra-logstash:772_150321_v2
INFO: docker push 172.16.26.5/release/infra-zookeeper:7.0.1.12242021
INFO: docker push 172.16.26.5/release/elasticsearch-config:0.5
INFO: docker push 172.16.26.5/release/infra-distributed-db:8.8.7
INFO: docker image prune -af
INFO: tar -xf images/linstor.tgz
INFO: docker load -qi images/linstor/csi-provisioner:v3.0.0.tar
INFO: docker load -qi images/linstor/piraeus-ha-controller:v0.2.0.tar
INFO: docker load -qi images/linstor/centos:8.tar
INFO: docker load -qi images/linstor/csi-attacher:v3.3.0.tar
INFO: docker load -qi images/linstor/csi-snapshotter:v4.2.1.tar
INFO: docker load -qi images/linstor/kube-scheduler-amd64:v1.21.9.tar
INFO: docker load -qi images/linstor/livenessprobe:v2.5.0.tar
INFO: docker load -qi images/linstor/drbd9-centos7:v9.1.4.tar
INFO: docker load -qi images/linstor/piraeus-server:v1.17.0.tar
INFO: docker load -qi images/linstor/drbd-reactor:v0.4.4.tar
INFO: docker load -qi images/linstor/etcd:v3.4.15.tar
INFO: docker load -qi images/linstor/piraeus-csi:v0.17.0.tar
INFO: docker load -qi images/linstor/piraeus-operator:v1.7.0.tar
INFO: docker load -qi images/linstor/csi-node-driver-registrar:v2.4.0.tar
INFO: docker load -qi images/linstor/stork:2.6.5.tar
INFO: docker load -qi images/linstor/csi-resizer:v1.3.0.tar
INFO: docker tag k8s.gcr.io/sig-storage/csi-provisioner:v3.0.0
172.16.26.5/release/csi-provisioner:v3.0.0
INFO: docker tag quay.io/piraeusdatastore/piraeus-ha-controller:v0.2.0
172.16.26.5/release/piraeus-ha-controller:v0.2.0
INFO: docker tag quay.io/centos/centos:8 172.16.26.5/release/centos:8
INFO: docker tag k8s.gcr.io/sig-storage/csi-attacher:v3.3.0
172.16.26.5/release/csi-attacher:v3.3.0
INFO: docker tag k8s.gcr.io/sig-storage/csi-snapshotter:v4.2.1
172.16.26.5/release/csi-snapshotter:v4.2.1

41

ATOM Deployment Guide

INFO: docker tag k8s.gcr.io/kube-scheduler-amd64:v1.21.9
172.16.26.5/release/kube-scheduler-amd64:v1.21.9
INFO: docker tag k8s.gcr.io/sig-storage/livenessprobe:v2.5.0
172.16.26.5/release/livenessprobe:v2.5.0
INFO: docker tag quay.io/piraeusdatastore/drbd9-centos7:v9.1.4
172.16.26.5/release/drbd9-centos7:v9.1.4
INFO: docker tag quay.io/piraeusdatastore/piraeus-server:v1.17.0
172.16.26.5/release/piraeus-server:v1.17.0
INFO: docker tag quay.io/piraeusdatastore/drbd-reactor:v0.4.4
172.16.26.5/release/drbd-reactor:v0.4.4
INFO: docker tag gcr.io/etcd-development/etcd:v3.4.15
172.16.26.5/release/etcd:v3.4.15
INFO: docker tag quay.io/piraeusdatastore/piraeus-csi:v0.17.0
172.16.26.5/release/piraeus-csi:v0.17.0
INFO: docker tag quay.io/piraeusdatastore/piraeus-operator:v1.7.0
172.16.26.5/release/piraeus-operator:v1.7.0
INFO: docker tag k8s.gcr.io/sig-storage/csi-node-driver-registrar:v2.4.0
172.16.26.5/release/csi-node-driver-registrar:v2.4.0
INFO: docker tag quay.io/anuta/stork:2.6.5
172.16.26.5/release/stork:2.6.5
INFO: docker tag k8s.gcr.io/sig-storage/csi-resizer:v1.3.0
172.16.26.5/release/csi-resizer:v1.3.0
INFO: docker push 172.16.26.5/release/csi-provisioner:v3.0.0
INFO: docker push 172.16.26.5/release/piraeus-ha-controller:v0.2.0
INFO: docker push 172.16.26.5/release/centos:8
INFO: docker push 172.16.26.5/release/csi-attacher:v3.3.0
INFO: docker push 172.16.26.5/release/csi-snapshotter:v4.2.1
INFO: docker push 172.16.26.5/release/kube-scheduler-amd64:v1.21.9
INFO: docker push 172.16.26.5/release/livenessprobe:v2.5.0
INFO: docker push 172.16.26.5/release/drbd9-centos7:v9.1.4
INFO: docker push 172.16.26.5/release/piraeus-server:v1.17.0
INFO: docker push 172.16.26.5/release/drbd-reactor:v0.4.4
INFO: docker push 172.16.26.5/release/etcd:v3.4.15
INFO: docker push 172.16.26.5/release/piraeus-csi:v0.17.0
INFO: docker push 172.16.26.5/release/piraeus-operator:v1.7.0
INFO: docker push 172.16.26.5/release/csi-node-driver-registrar:v2.4.0
INFO: docker push 172.16.26.5/release/stork:2.6.5
INFO: docker push 172.16.26.5/release/csi-resizer:v1.3.0
INFO: docker image prune -af
INFO: tar -xf images/kubernetes.tgz
INFO: docker load -qi images/kubernetes/etcd:3.4.13-0.tar
INFO: docker load -qi images/kubernetes/kube-proxy:v1.21.9.tar
INFO: docker load -qi images/kubernetes/coredns:v1.8.0.tar
INFO: docker load -qi images/kubernetes/kube-apiserver:v1.21.9.tar
INFO: docker load -qi images/kubernetes/kube-scheduler:v1.21.9.tar
INFO: docker load -qi
images/kubernetes/kube-controller-manager:v1.21.9.tar
INFO: docker load -qi images/kubernetes/metrics-server:v0.4.2.tar
INFO: docker load -qi images/kubernetes/eventrouter:v0.3.tar
INFO: docker load -qi images/kubernetes/pause:3.4.1.tar
INFO: docker tag k8s.gcr.io/etcd:3.4.13-0
172.16.26.5/release/etcd:3.4.13-0
INFO: docker tag k8s.gcr.io/kube-proxy:v1.21.9
172.16.26.5/release/kube-proxy:v1.21.9
INFO: docker tag k8s.gcr.io/coredns/coredns:v1.8.0
172.16.26.5/release/coredns:v1.8.0

42

ATOM Deployment Guide

INFO: docker tag k8s.gcr.io/kube-apiserver:v1.21.9
172.16.26.5/release/kube-apiserver:v1.21.9
INFO: docker tag k8s.gcr.io/kube-scheduler:v1.21.9
172.16.26.5/release/kube-scheduler:v1.21.9
INFO: docker tag k8s.gcr.io/kube-controller-manager:v1.21.9
172.16.26.5/release/kube-controller-manager:v1.21.9
INFO: docker tag k8s.gcr.io/metrics-server/metrics-server:v0.4.2
172.16.26.5/release/metrics-server:v0.4.2
INFO: docker tag gcr.io/heptio-images/eventrouter:v0.3
172.16.26.5/release/eventrouter:v0.3
INFO: docker tag k8s.gcr.io/pause:3.4.1 172.16.26.5/release/pause:3.4.1
INFO: docker push 172.16.26.5/release/etcd:3.4.13-0
INFO: docker push 172.16.26.5/release/kube-proxy:v1.21.9
INFO: docker push 172.16.26.5/release/coredns:v1.8.0
INFO: docker push 172.16.26.5/release/kube-apiserver:v1.21.9
INFO: docker push 172.16.26.5/release/kube-scheduler:v1.21.9
INFO: docker push 172.16.26.5/release/kube-controller-manager:v1.21.9
INFO: docker push 172.16.26.5/release/metrics-server:v0.4.2
INFO: docker push 172.16.26.5/release/eventrouter:v0.3
INFO: docker push 172.16.26.5/release/pause:3.4.1
INFO: docker image prune -af
INFO: tar -xf images/standalone.tgz
INFO: docker load -qi
images/standalone/thanos-receive-controller:latest.tar
INFO: docker load -qi images/standalone/dashboard:v2.0.0-rc5.tar
INFO: docker load -qi images/standalone/modsecurity-spoa:v0.6.tar
INFO: docker load -qi images/standalone/prometheus:v2.30.3.tar
INFO: docker load -qi images/standalone/curator:5.7.6.tar
INFO: docker load -qi images/standalone/postgres_exporter:v0.8.0.tar
INFO: docker load -qi
images/standalone/mc:RELEASE.2020-07-17T02-52-20Z.tar
INFO: docker load -qi images/standalone/jaeger-collector:1.21.0.tar
INFO: docker load -qi images/standalone/haproxy-ingress:v0.11.tar
INFO: docker load -qi images/standalone/thanos:v0.23.1.tar
INFO: docker load -qi images/standalone/rsyslog:latest.tar
INFO: docker load -qi images/standalone/node-exporter:v1.1.2.tar
INFO: docker load -qi images/standalone/spark-dependencies:latest.tar
INFO: docker load -qi images/standalone/pushgateway:v0.8.0.tar
INFO: docker load -qi images/standalone/busybox:1.28.tar
INFO: docker load -qi images/standalone/jaeger-agent:1.21.0.tar
INFO: docker load -qi
images/standalone/jaeger-cassandra-schema:1.21.0.tar
INFO: docker load -qi images/standalone/kafka-manager:latest.tar
INFO: docker load -qi images/standalone/example-hotrod:1.21.0.tar
INFO: docker load -qi images/standalone/metrics-scraper:v1.0.3.tar
INFO: docker load -qi images/standalone/jaeger-query:1.21.0.tar
INFO: docker load -qi images/standalone/alertmanager:v0.21.0.tar
INFO: docker load -qi images/standalone/helm-kubectl-jq:3.1.0.tar
INFO: docker load -qi
images/standalone/minio:RELEASE.2020-07-27T18-37-02Z.tar
INFO: docker load -qi images/standalone/kube-state-metrics:v1.9.8.tar
INFO: docker load -qi images/standalone/cp-schema-registry:7.0.1.tar
INFO: docker load -qi images/standalone/kube-vip:v0.3.8.tar
INFO: docker load -qi images/standalone/burrow-exporter:latest.tar
INFO: docker load -qi images/standalone/echoserver:1.3.tar
INFO: docker load -qi images/standalone/configmap-reload:v0.5.0.tar

43

ATOM Deployment Guide

INFO: docker tag quay.io/observatorium/thanos-receive-controller:latest
172.16.26.5/release/thanos-receive-controller:latest
INFO: docker tag quay.io/anuta/dashboard:v2.0.0-rc5
172.16.26.5/release/dashboard:v2.0.0-rc5
INFO: docker tag quay.io/jcmoraisjr/modsecurity-spoa:v0.6
172.16.26.5/release/modsecurity-spoa:v0.6
INFO: docker tag quay.io/prometheus/prometheus:v2.30.3
172.16.26.5/release/prometheus:v2.30.3
INFO: docker tag quay.io/anuta/curator:5.7.6
172.16.26.5/release/curator:5.7.6
INFO: docker tag quay.io/anuta/postgres_exporter:v0.8.0
172.16.26.5/release/postgres_exporter:v0.8.0
INFO: docker tag quay.io/anuta/mc:RELEASE.2020-07-17T02-52-20Z
172.16.26.5/release/mc:RELEASE.2020-07-17T02-52-20Z
INFO: docker tag quay.io/jaegertracing/jaeger-collector:1.21.0
172.16.26.5/release/jaeger-collector:1.21.0
INFO: docker tag quay.io/jcmoraisjr/haproxy-ingress:v0.11
172.16.26.5/release/haproxy-ingress:v0.11
INFO: docker tag quay.io/thanos/thanos:v0.23.1
172.16.26.5/release/thanos:v0.23.1
INFO: docker tag quay.io/anuta/rsyslog:latest
172.16.26.5/release/rsyslog:latest
INFO: docker tag quay.io/prometheus/node-exporter:v1.1.2
172.16.26.5/release/node-exporter:v1.1.2
INFO: docker tag quay.io/jaegertracing/spark-dependencies:latest
172.16.26.5/release/spark-dependencies:latest
INFO: docker tag quay.io/prometheus/pushgateway:v0.8.0
172.16.26.5/release/pushgateway:v0.8.0
INFO: docker tag quay.io/anuta/busybox:1.28
172.16.26.5/release/busybox:1.28
INFO: docker tag quay.io/jaegertracing/jaeger-agent:1.21.0
172.16.26.5/release/jaeger-agent:1.21.0
INFO: docker tag quay.io/jaegertracing/jaeger-cassandra-schema:1.21.0
172.16.26.5/release/jaeger-cassandra-schema:1.21.0
INFO: docker tag quay.io/anuta/kafka-manager:latest
172.16.26.5/release/kafka-manager:latest
INFO: docker tag quay.io/jaegertracing/example-hotrod:1.21.0
172.16.26.5/release/example-hotrod:1.21.0
INFO: docker tag quay.io/anuta/metrics-scraper:v1.0.3
172.16.26.5/release/metrics-scraper:v1.0.3
INFO: docker tag quay.io/jaegertracing/jaeger-query:1.21.0
172.16.26.5/release/jaeger-query:1.21.0
INFO: docker tag quay.io/prometheus/alertmanager:v0.21.0
172.16.26.5/release/alertmanager:v0.21.0
INFO: docker tag quay.io/anuta/helm-kubectl-jq:3.1.0
172.16.26.5/release/helm-kubectl-jq:3.1.0
INFO: docker tag quay.io/anuta/minio:RELEASE.2020-07-27T18-37-02Z
172.16.26.5/release/minio:RELEASE.2020-07-27T18-37-02Z
INFO: docker tag quay.io/coreos/kube-state-metrics:v1.9.8
172.16.26.5/release/kube-state-metrics:v1.9.8
INFO: docker tag quay.io/anuta/cp-schema-registry:7.0.1
172.16.26.5/release/cp-schema-registry:7.0.1
INFO: docker tag ghcr.io/kube-vip/kube-vip:v0.3.8
172.16.26.5/release/kube-vip:v0.3.8
INFO: docker tag quay.io/anuta/burrow-exporter:latest
172.16.26.5/release/burrow-exporter:latest

44

ATOM Deployment Guide

INFO: docker tag gcr.io/google_containers/echoserver:1.3
172.16.26.5/release/echoserver:1.3
INFO: docker tag quay.io/anuta/configmap-reload:v0.5.0
172.16.26.5/release/configmap-reload:v0.5.0
INFO: docker push 172.16.26.5/release/thanos-receive-controller:latest
INFO: docker push 172.16.26.5/release/dashboard:v2.0.0-rc5
INFO: docker push 172.16.26.5/release/modsecurity-spoa:v0.6
INFO: docker push 172.16.26.5/release/prometheus:v2.30.3
INFO: docker push 172.16.26.5/release/curator:5.7.6
INFO: docker push 172.16.26.5/release/postgres_exporter:v0.8.0
INFO: docker push 172.16.26.5/release/mc:RELEASE.2020-07-17T02-52-20Z
INFO: docker push 172.16.26.5/release/jaeger-collector:1.21.0
INFO: docker push 172.16.26.5/release/haproxy-ingress:v0.11
INFO: docker push 172.16.26.5/release/thanos:v0.23.1
INFO: docker push 172.16.26.5/release/rsyslog:latest
INFO: docker push 172.16.26.5/release/node-exporter:v1.1.2
INFO: docker push 172.16.26.5/release/spark-dependencies:latest
INFO: docker push 172.16.26.5/release/pushgateway:v0.8.0
INFO: docker push 172.16.26.5/release/busybox:1.28
INFO: docker push 172.16.26.5/release/jaeger-agent:1.21.0
INFO: docker push 172.16.26.5/release/jaeger-cassandra-schema:1.21.0
INFO: docker push 172.16.26.5/release/kafka-manager:latest
INFO: docker push 172.16.26.5/release/example-hotrod:1.21.0
INFO: docker push 172.16.26.5/release/metrics-scraper:v1.0.3
INFO: docker push 172.16.26.5/release/jaeger-query:1.21.0
INFO: docker push 172.16.26.5/release/alertmanager:v0.21.0
INFO: docker push 172.16.26.5/release/helm-kubectl-jq:3.1.0
INFO: docker push 172.16.26.5/release/minio:RELEASE.2020-07-27T18-37-02Z
INFO: docker push 172.16.26.5/release/kube-state-metrics:v1.9.8
INFO: docker push 172.16.26.5/release/cp-schema-registry:7.0.1
INFO: docker push 172.16.26.5/release/kube-vip:v0.3.8
INFO: docker push 172.16.26.5/release/burrow-exporter:latest
INFO: docker push 172.16.26.5/release/echoserver:1.3
INFO: docker push 172.16.26.5/release/configmap-reload:v0.5.0
INFO: docker image prune -af
INFO: tar -xf images/atom.tgz
INFO: docker load -qi images/atom/atom-python3:11.3.0.0.48817.tar
INFO: docker load -qi images/atom/atom-agent-proxy:11.3.0.0.48817.tar
INFO: docker load -qi images/atom/atom-pnp-server:11.3.0.0.48817.tar
INFO: docker load -qi
images/atom/atom-telemetry-engine:11.3.0.0.48817.tar
INFO: docker load -qi images/atom/atom-ml:11.3.0.0.48817.tar
INFO: docker load -qi images/atom/atom-python2:11.3.0.0.48817.tar
INFO: docker load -qi images/atom/atom-workflow-engine:11.3.0.0.48817.tar
INFO: docker load -qi images/atom/atom-isim:11.3.0.0.48817.tar
INFO: docker load -qi images/atom/atom-inventory-mgr:11.3.0.0.48817.tar
INFO: docker load -qi images/atom/atom-core:11.3.0.0.48817.tar
INFO: docker load -qi images/atom/atom-agent:11.3.0.0.48817.tar
INFO: docker load -qi
images/atom/atom-telemetry-exporter:11.3.0.0.48817.tar
INFO: docker load -qi images/atom/atom-scheduler:11.3.0.0.48817.tar
INFO: docker tag quay.io/release/atom-python3:11.3.0.0.48817
172.16.26.5/release/atom-python3:11.3.0.0.48817
INFO: docker tag quay.io/release/atom-agent-proxy:11.3.0.0.48817
172.16.26.5/release/atom-agent-proxy:11.3.0.0.48817

45

ATOM Deployment Guide

INFO: docker tag quay.io/release/atom-pnp-server:11.3.0.0.48817
172.16.26.5/release/atom-pnp-server:11.3.0.0.48817
INFO: docker tag quay.io/release/atom-telemetry-engine:11.3.0.0.48817
172.16.26.5/release/atom-telemetry-engine:11.3.0.0.48817
INFO: docker tag quay.io/release/atom-ml:11.3.0.0.48817
172.16.26.5/release/atom-ml:11.3.0.0.48817
INFO: docker tag quay.io/release/atom-python2:11.3.0.0.48817
172.16.26.5/release/atom-python2:11.3.0.0.48817
INFO: docker tag quay.io/release/atom-workflow-engine:11.3.0.0.48817
172.16.26.5/release/atom-workflow-engine:11.3.0.0.48817
INFO: docker tag quay.io/release/atom-isim:11.3.0.0.48817
172.16.26.5/release/atom-isim:11.3.0.0.48817
INFO: docker tag quay.io/release/atom-inventory-mgr:11.3.0.0.48817
172.16.26.5/release/atom-inventory-mgr:11.3.0.0.48817
INFO: docker tag quay.io/release/atom-core:11.3.0.0.48817
172.16.26.5/release/atom-core:11.3.0.0.48817
INFO: docker tag quay.io/atom-agent/atom-agent:11.3.0.0.48817
172.16.26.5/release/atom-agent:11.3.0.0.48817
INFO: docker tag quay.io/release/atom-telemetry-exporter:11.3.0.0.48817
172.16.26.5/release/atom-telemetry-exporter:11.3.0.0.48817
INFO: docker tag quay.io/release/atom-scheduler:11.3.0.0.48817
172.16.26.5/release/atom-scheduler:11.3.0.0.48817
INFO: docker push 172.16.26.5/release/atom-python3:11.3.0.0.48817
INFO: docker push 172.16.26.5/release/atom-agent-proxy:11.3.0.0.48817
INFO: docker push 172.16.26.5/release/atom-pnp-server:11.3.0.0.48817
INFO: docker push
172.16.26.5/release/atom-telemetry-engine:11.3.0.0.48817
INFO: docker push 172.16.26.5/release/atom-ml:11.3.0.0.48817
INFO: docker push 172.16.26.5/release/atom-python2:11.3.0.0.48817
INFO: docker push 172.16.26.5/release/atom-workflow-engine:11.3.0.0.48817
INFO: docker push 172.16.26.5/release/atom-isim:11.3.0.0.48817
INFO: docker push 172.16.26.5/release/atom-inventory-mgr:11.3.0.0.48817
INFO: docker push 172.16.26.5/release/atom-core:11.3.0.0.48817
INFO: docker push 172.16.26.5/release/atom-agent:11.3.0.0.48817
INFO: docker push
172.16.26.5/release/atom-telemetry-exporter:11.3.0.0.48817
INFO: docker push 172.16.26.5/release/atom-scheduler:11.3.0.0.48817
INFO: docker image prune -af
INFO: tar -xf images/calico.tgz
INFO: docker load -qi images/calico/pod2daemon-flexvol:v3.15.5.tar
INFO: docker load -qi images/calico/cni:v3.15.5.tar
INFO: docker load -qi images/calico/node:v3.15.5.tar
INFO: docker load -qi images/calico/kube-controllers:v3.15.5.tar
INFO: docker tag quay.io/calico/pod2daemon-flexvol:v3.15.5
172.16.26.5/release/pod2daemon-flexvol:v3.15.5
INFO: docker tag quay.io/calico/cni:v3.15.5
172.16.26.5/release/cni:v3.15.5
INFO: docker tag quay.io/calico/node:v3.15.5
172.16.26.5/release/node:v3.15.5
INFO: docker tag quay.io/calico/kube-controllers:v3.15.5
172.16.26.5/release/kube-controllers:v3.15.5
INFO: docker push 172.16.26.5/release/pod2daemon-flexvol:v3.15.5
INFO: docker push 172.16.26.5/release/cni:v3.15.5
INFO: docker push 172.16.26.5/release/node:v3.15.5
INFO: docker push 172.16.26.5/release/kube-controllers:v3.15.5
INFO: docker image prune -af

46

ATOM Deployment Guide

INFO: tar -xf images/calico.tgz
INFO: docker load -qi images/calico/pod2daemon-flexvol:v3.15.5.tar
INFO: docker load -qi images/calico/cni:v3.15.5.tar
INFO: docker load -qi images/calico/node:v3.15.5.tar
INFO: docker load -qi images/calico/kube-controllers:v3.15.5.tar
INFO: docker tag quay.io/calico/pod2daemon-flexvol:v3.15.5
172.16.26.5/release/pod2daemon-flexvol:v3.15.5
INFO: docker tag quay.io/calico/cni:v3.15.5
172.16.26.5/release/cni:v3.15.5
INFO: docker tag quay.io/calico/node:v3.15.5
172.16.26.5/release/node:v3.15.5
INFO: docker tag quay.io/calico/kube-controllers:v3.15.5
172.16.26.5/release/kube-controllers:v3.15.5
INFO: docker push 172.16.26.5/release/pod2daemon-flexvol:v3.15.5
INFO: docker push 172.16.26.5/release/cni:v3.15.5
INFO: docker push 172.16.26.5/release/node:v3.15.5
INFO: docker push 172.16.26.5/release/kube-controllers:v3.15.5
INFO: docker image prune -af
INFO: tar -xf images/infra.tgz
INFO: docker load -qi images/infra/infra-grafana:7.5.7.tar
INFO: docker load -qi images/infra/infra-glowroot:0.9.tar
INFO: docker load -qi images/infra/infra-kafka-control:0.2.0.tar
INFO: docker load -qi images/infra/infra-burrow:1.3.8.tar
INFO: docker load -qi images/infra/keycloak:13.1.0.tar
INFO: docker load -qi images/infra/controller:v0.10.2.tar
INFO: docker load -qi images/infra/speaker:v0.10.2.tar
INFO: docker load -qi images/infra/oauth2-proxy:v7.0.1-verifyjwt.tar
INFO: docker load -qi images/infra/infra-kibana:710_opendistro.tar
INFO: docker tag quay.io/release/infra-grafana:7.5.7
172.16.26.5/release/infra-grafana:7.5.7
INFO: docker tag quay.io/release/infra-glowroot:0.9
172.16.26.5/release/infra-glowroot:0.9
INFO: docker tag quay.io/release/infra-kafka-control:0.2.0
172.16.26.5/release/infra-kafka-control:0.2.0
INFO: docker tag quay.io/release/infra-burrow:1.3.8
172.16.26.5/release/infra-burrow:1.3.8
INFO: docker tag quay.io/release/keycloak:13.1.0
172.16.26.5/release/keycloak:13.1.0
INFO: docker tag quay.io/metallb/controller:v0.10.2
172.16.26.5/release/controller:v0.10.2
INFO: docker tag quay.io/metallb/speaker:v0.10.2
172.16.26.5/release/speaker:v0.10.2
INFO: docker tag quay.io/release/oauth2-proxy:v7.0.1-verifyjwt
172.16.26.5/release/oauth2-proxy:v7.0.1-verifyjwt
INFO: docker tag quay.io/release/infra-kibana:710_opendistro
172.16.26.5/release/infra-kibana:710_opendistro
INFO: docker push 172.16.26.5/release/infra-grafana:7.5.7
INFO: docker push 172.16.26.5/release/infra-glowroot:0.9
INFO: docker push 172.16.26.5/release/infra-kafka-control:0.2.0
INFO: docker push 172.16.26.5/release/infra-burrow:1.3.8
INFO: docker push 172.16.26.5/release/keycloak:13.1.0
INFO: docker push 172.16.26.5/release/controller:v0.10.2
INFO: docker push 172.16.26.5/release/speaker:v0.10.2
INFO: docker push 172.16.26.5/release/oauth2-proxy:v7.0.1-verifyjwt
INFO: docker push 172.16.26.5/release/infra-kibana:710_opendistro
INFO: docker image prune -af

47

ATOM Deployment Guide

Once the above script is executed, the docker registry has been installed and setup correctly.
We can begin with k8s installation and Atom Installation.

Please follow the steps as stated in section New Kubernetes cluster to bootstrap master and

worker nodes and setup the k8s cluster and install Atom.

Note: As it is an offline Installation we do not require internet connection on any of the nodes

as long as the registry has been setup properly and NTP server is present to sync the time

between all the nodes.

Please note after updating Node IP: Select yes option for offline installation and provide the

registry ip and project/repo name when prompted.

Atom Installation would be complete and we can proceed by onboarding packages and devices

on the platform.

48

ATOM Deployment Guide

ATOM Remote Agent Deployment
In the ATOM Distributed deployment model, Remote Agent is used to communicate, collect and

monitor the networking devices in your infrastructure using standard protocols. Once the agent

collects the data, it gets encrypted and sent to Anuta ATOM Server over an outgoing SSL

Connection.

The ATOM Agent is an application that runs on a Linux server within your infrastructure as a

docker container. ATOM agents have to be installed on each location of your device's

infrastructure.

For deployment of ATOM agent across various geographies perform the steps mentioned in the

ATOM Remote Agent Deployment Guide [version 10.0]

Procedure of Deploying ATOM in
GCP/GKE
ATOM can be deployed on Google Cloud Platform (GCP) Google Kubernetes Engine (GKE)
using the “Deployment scripts and files” provided by Anuta.

Prerequisites
11. An Ubuntu/CentOS machine that has access to the internet, so that the deployment

scripts can be run. Below are some of the softwares to be installed on that machine.
a. Helm v3.5.4

i. Installation procedure: https://helm.sh/docs/intro/install/

b. Gcloud SDK

i. Installation procedure: https://cloud.google.com/sdk/docs/install

ii. Setup the gcloud SDK using “gcloud auth login” and “gcloud auth

application-default login” if they are not set.

iii. Verification can be done using “gcloud container clusters list”

c. Kubectl installed v1.21

i. Installation procedure:

https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-using-nativ

e-package-management

d. Docker installed v20.10 and above

i. Installation procedure: https://docs.docker.com/engine/install/

49

https://www.anutanetworks.com/documentation/atom-remote-agent-management/
https://docs.google.com/document/d/15vjQ1o_SUrSr4RF3yCI_BbD7bhN6tTGo77uweU8Nj6k/edit#heading=h.xnlmuxguk9on
https://helm.sh/docs/intro/install/
https://cloud.google.com/sdk/docs/install
https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-using-native-package-management
https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-using-native-package-management
https://docs.docker.com/engine/install/

ATOM Deployment Guide

e. Python2.7 pip package

i. Install python-pip using “sudo apt-get install python-pip” or “sudo yum

install python-pip” depending on the distro being used.

ii. Install the following packages using the below command

1. sudo pip install pyyaml==3.13

2. sudo pip install requests==2.20.0

3. sudo pip install setuptools==40.5.0

4. sudo pip install cryptography==2.3.1

5. sudo pip install pyJWT==1.6.4

6. sudo pip install cachetools==2.1.0

7. sudo pip install kubernetes==11.0.0

12. A site-to-site VPN setup between your datacenter and GCP created for ATOM to reach
devices.

13. If the linux machine is created on the GCP, then confirm that the service account
mapped has enough privileges to run as sudo. The permissions for the service account to
have Kubernetes Engine, Compute Engine and Compute OS privileges to ensure cluster
role creation is allowed during ATOM installation.

Deploying New K8s Cluster
After ensuring that the prerequisites are taken care, perform the following steps:

Minimal Setup:

Login to your GCP console and navigate to the Kubernetes Engine tab.
❏ Click on the Create button which would open the option of cluster models
❏ Select the configure button of Standard kind

50

ATOM Deployment Guide

❏ Provide the name of the cluster and select the location of choice. Location to be set to
Zonal and choice of the zone can be selected from the list available.

❏ Proceed to control plane version selection and select the Release channel radio button.
Select the Regular channel from the list and ensure that the kubernetes version falls into
v1.21

51

ATOM Deployment Guide

❏ At the left pane, select the default node pool, provide the name and number of nodes to
4(as per minimal deployment size)

❏ Proceed to the nodes section, select the node type as “Ubuntu with Docker(ubuntu)”. Set
the size to “e2-highmem-4” under E2 series.

52

ATOM Deployment Guide

❏ Proceed to the Security tab under nodepool, and select the service account created for
the same having enough privileges to host the compute instance.

❏ Proceed to the Metadata tab under nodepool, provide the following kubernetes labels

broker=deploy

default_agent=deploy

distributed_db=deploy

elasticsearch=deploy

grafana=deploy

infra-tsdb=deploy

monitoring_server=deploy

northbound=deploy

object_store=deploy

securestore=deploy

thanos=deploy

zookeeper=deploy

53

ATOM Deployment Guide

❏ Proceed to the Networking tab, select the network and node subnet as per the lab
networking done.

❏ Select the Public or Private cluster depending on the choice. Provide the POD CIDR and
Service CIDR if there are any which accordingly adds to the kubernetes pods.

54

ATOM Deployment Guide

❏ Set the “Enable Kubernetes Network Policy” by selecting the checkbox. Optionally select if
other options are required.

❏ Optionally set if there are any options required at Security, Metadata and Features tab
as required.

❏ Finally select Create at the bottom to create the kubernetes cluster on GKE.

Resilient-HA Setup:

Login to your GCP console and navigate to the Kubernetes Engine tab.
❏ Click on the Create button which would open the option of cluster models
❏ Select the configure button of Standard kind

55

ATOM Deployment Guide

❏ Provide the name of the cluster and select the location of choice. Location to be set to
Regional and choice of the zones(2 to 3 zones) can be selected from the list available.

❏ Proceed to control plane version selection and select the Release channel radio button.
Select the Regular channel from the list and ensure that the kubernetes version falls into
v1.21

56

ATOM Deployment Guide

❏ At the left pane, select the default node pool, provide the name and number of nodes to
4 so the total number of nodes is 8(as per resilient deployment size requirement). If the
number of zones selected are 3 then provide the number of nodes to 3 per zone so the
total number of nodes is 9.

Note: If node pools need to be separated across zones, create multiple node pool and
select the specific node locations of the choice.

❏ Proceed to the nodes section, select the node type as “Ubuntu with Docker(ubuntu)”. Set
the size to “e2-highmem-4” under E2 series.

57

ATOM Deployment Guide

❏ Proceed to the Security tab under nodepool, and select the service account created for
the same having enough privileges to host the compute instance.

❏ Proceed to the Metadata tab under nodepool, provide the following kubernetes labels

broker=deploy

default_agent=deploy

distributed_db=deploy

elasticsearch=deploy

grafana=deploy

infra-tsdb=deploy

monitoring_server=deploy

northbound=deploy

object_store=deploy

securestore=deploy

thanos=deploy

zookeeper=deploy

58

ATOM Deployment Guide

Note: If multiple node pools are set, above node labels have to be provided for all the
node pools.

❏ Proceed to the Networking tab, select the network and node subnet as per the lab
networking done.

❏ Select the Public or Private cluster depending on the choice. Provide the POD CIDR and
Service CIDR if there are any which accordingly adds to the kubernetes pods.

59

ATOM Deployment Guide

❏ Set the “Enable Kubernetes Network Policy” by selecting the checkbox. Optionally select if
other options are required.

❏ Optionally set if there are any options required at Security, Metadata and Features tab
as required.

❏ Finally select Create at the bottom to create the kubernetes cluster on GKE.

Deploying ATOM
After ensuring that the prerequisites described in the section “Prerequisites” are taken care of,
perform the following steps:

1. Login to your linux machine and connect to cluster

60

ATOM Deployment Guide

gcloud container clusters get-credentials <CLUSTER NAME> --region
<REGION> --project <PROJECT NAME>

sudo gcloud container clusters get-credentials <CLUSTER NAME>
--region <REGION> --project <PROJECT NAME>

Example: gcloud container clusters get-credentials demo-cluster
--region us-central1 --project anuta-atom-gke

Note: running sudo is required since deployment scripts run with sudo

2. Unzip the deployment-scripts folder, provided by Anuta, described in the section,

“Deployment scripts and files”. Update wrapper.properties file accordingly.

a. Cross verify if build number is set

b. Cross verify if deployment_type is set to “gcloud”

c. Set the public key to “enable” or “disable” depending on cluster type. When

enabled, LoadBalancers created for ATOM would have public access over the

internet.

d. Update size to required value like “minimal” or “resilient”

e. Set the zonal_resiliency to “enable” if the size is resilient to spread workloads

across zones. For minimal size, this can be set to disable.

f. Cross verify if image_pull is set to "quay"

g. Cross verify if organization is set to "release"

3. Deploy ATOM by executing the following script

sudo python deploy_atom.py

4. Executing above steps will complete the ATOM deployment.

After deployment is completed, the URL’s to access the ATOM application can be fetched
by running

kubectl get svc -n atom

For local deployments, the services are accessible via nodePorts and for cloud
deployments the services are accessible via LoadBalancers.

Procedure of Deploying ATOM in
AWS
ATOM can be deployed on Amazon Web Services (AWS) Elastic Kubernetes Service (EKS)
using the “Deployment scripts and files” provided by Anuta.

Following diagram depicts ATOM deployment in terms of AWS resources.

61

https://docs.google.com/document/d/15vjQ1o_SUrSr4RF3yCI_BbD7bhN6tTGo77uweU8Nj6k/edit#heading=h.xnlmuxguk9on

ATOM Deployment Guide

Prerequisites
1. Deployment Machine - An Ubuntu machine running with v18.04 that has access to the

internet, so that the deployment scripts can be run.
Spec:

cpu: 2 vcpu
mem: 4GB
storage: 50GB
Image: Ubuntu - 18.04.06 LTS (Bionic Beaver)

OR
aws instance type: t2-medium
Community AMI: ubuntu-bionic-18.04-amd64-server-20211129 -

ami-074251216af698218
SecurityGroup/FW Rules:

a. Allow inbound ssh access to the ubuntu machine from DC.
b. Allow all outbound to the internet.

Below software must be installed on that machine.
a. Helm v3.5.4

62

ATOM Deployment Guide

i. wget -q https://get.helm.sh/helm-v3.5.4-linux-amd64.tar.gz

ii. tar -zxvf helm-v3.5.4-linux-amd64.tar.gz

iii. sudo mv linux-amd64/helm /usr/local/bin/

b. AWS CLI v2

i. Installation procedure:

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-linux.html

#cliv2-linux-install

c. EKSCTL 0.79.0

i. Installation procedure:

https://github.com/weaveworks/eksctl#installation

d. Kubectl installed v1.21 and above

i. Installation procedure:

https://v1-21.docs.kubernetes.io/docs/tasks/tools/install-kubectl-linux/

e. python 2.7

i. sudo apt install python
f. Kubernetes pip package v11.0.0

i. Install python-pip using “sudo apt-get install python-pip”

ii. Upgrade the pip to latest using “sudo pip install pip --upgrade”

iii. Installed using “sudo pip install kubernetes==11.0.0”

g. Paramiko package v2.6.0

i. Installed using “sudo pip install paramiko”

Reboot the system “sudo reboot”

2. Connectivity between on-premises DC and AWS VPCs. Please refer to section “AWS
connectivity options” in Appendix for more information.

3. A /24 ip block as vpc cidr - ATOM deployment scripts use eksctl tool to create a
kubernetes cluster on AWS. eksct by default creates a dedicated vpc and creates a eks
cluster in the vpc. Please choose a vpc cidr to accommodate all the future needs
considering the cluster expansion if needed.
Please refer to https://eksctl.io/usage/vpc-networking/ for more information about cidr
planning.

4. ELBs
a. All the ELBs are created by kubernetes service manifests.
b. All ELBs are of type NLB and default internal. If you have a requirement to deploy

“external” ELB, please modify values in wrapper.properties file - refer to section
Deploying ATOM.

c. ATOM by default uses self signed certificates. If you prefer to use the proper
certificates, please refer to the section Custom SSL Certificate for ATOM

5. User with following IAM privileges are required
a. IAM User with following permissions to create EKS cluster

https://eksctl.io/usage/minimum-iam-policies/.,VPC full access policy.
b. IAM User with s3 Full access policy. This is needed for storing device

configuration in s3 using minio

63

https://get.helm.sh/helm-v3.5.4-linux-amd64.tar.gz
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-linux.html#cliv2-linux-install
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-linux.html#cliv2-linux-install
https://github.com/weaveworks/eksctl#installation
https://v1-21.docs.kubernetes.io/docs/tasks/tools/install-kubectl-linux/
https://eksctl.io/usage/vpc-networking/
https://eksctl.io/usage/minimum-iam-policies/

ATOM Deployment Guide

c. Create policy to provision volumes with type gp3.
i. From AWS console select Resources → IAM → Access Management → Policies

.

Click on create policy and select JSON and paste following json config.

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [

"ec2:AttachVolume",
"ec2:CreateSnapshot",
"ec2:CreateTags",
"ec2:CreateVolume",
"ec2:DeleteSnapshot",
"ec2:DeleteTags",
"ec2:DeleteVolume",
"ec2:DescribeInstances",
"ec2:DescribeSnapshots",
"ec2:DescribeTags",
"ec2:DescribeVolumes",
"ec2:DetachVolume"

],
"Resource": "*"

}
]

}

ii. Attach created policy to nodegroup arn used by cluster nodes.

From AWS console select Resources → IAM → Access Management → Roles.

Find the nodegroup-arn (identified by cluster-name) used by nodes and click on

that role. And select permissions and click on Attach policies and add the above

policy to the role.

6. File server - An optional component needed only if server ZTP provisioning is used.

Please refer to section File Server for ATOM ZTP in AWS.

Deploying New K8s Cluster
After ensuring that the prerequisites are taken care, perform the following steps:

❏ Login to the Ubuntu machine and follow below steps to configure aws cli
aws configure

64

ATOM Deployment Guide

❏ Execute below command which does Kubernetes cluster addition with prefered
node-type as r6i.xlarge

eksctl create cluster --name {cluster-name} --version 1.21 --region <region-name>

--node-type r6i.xlarge --without-nodegroup --node-volume-size 50

--node-private-networking --vpc-cidr <vpc-cidr> --ssh-access=true

--ssh-public-key={access-key} --vpc-nat-mode HighlyAvailable

Ex: eksctl create cluster --name aws-deploy-test --version 1.21 --region us-west-2

--node-type r6i.xlarge --without-nodegroup --node-volume-size 50

--node-private-networking --vpc-cidr 192.168.66.0/24 --ssh-access=true

--ssh-public-key=atom --vpc-nat-mode HighlyAvailable

NOTE: If ssh public key is missing then generate using ssh-keygen
If want to deploy on specific zones in a region “--zones=us-west-2a,us-west-2b”

❏ Delete the Amazon VPC CNI
kubectl delete ds aws-node -n kube-system

❏ Install Calico
Unzip the deployment-scripts folder, provided by Anuta, described in the section,
“Deployment scripts and files”. From the atom-deployment folder, go into scripts using
“cd scripts” and run below command.

kubectl apply -f calico.yaml

❏ Now we have a new VPC created for the EKS cluster. At this point please make sure the
connectivity between the deployment machine and eks cluster VPC. Please refer to
section “AWS connectivity options” in Appendix for more information.

❏ Create a nodegroup for worker nodes.
Based on type of setup being created, execute respective command

Minimal Setup:
eksctl create nodegroup --name {nodegroup-name} --nodes {total-number-of-nodes}
--nodes-min {minimum-number-of-nodes-in-availability-zone} --nodes-max
{maximum-number-of-nodes-availability-zone} --node-volume-size 50 --cluster
{cluster-name} --node-private-networking --node-type r6i.xlarge --ssh-access
--node-labels={labels} --managed

Example:

eksctl create nodegroup --name testing-nodegroup --nodes 4 --nodes-min 4 --nodes-max

4 --node-volume-size 50 --cluster $1 --node-private-networking --node-type

r6i.xlarge

--node-labels=zookeeper=deploy,broker=deploy,grafana=deploy,elasticsearch=deploy,obje

65

ATOM Deployment Guide

ct_store=deploy,distributed_db=deploy,default_agent=deploy,securestore=deploy,monitor

ing_server=deploy,infra-tsdb=deploy,thanos=deploy,agent1=deploy,northbound=deploy

--ssh-access --managed

Resilient-HA Setup:
eksctl create nodegroup --name {nodegroup-name} --nodes {total-number-of-nodes}

--nodes-min {minimum-number-of-nodes-in-availability-zone} --nodes-max

{maximum-number-of-nodes-availability-zone} --node-volume-size 50 --cluster

{cluster-name} --node-private-networking

--node-labels=zookeeper=deploy,broker=deploy,grafana=deploy,elasticsearch=deploy,obj

ect_store=deploy,distributed_db=deploy,default_agent=deploy,securestore=deploy,monit

oring_server=deploy,infra-tsdb=deploy,thanos=deploy,agent1=deploy,northbound=deplo

y --node-zones {availability-zone-name} --node-type r6i.xlarge --managed

● For resilient setup labels for nodes will be assigned during creation of the
nodegroup itself.

● We recommend a minimum of 9 worker nodes; 3 nodes per nodegroup, 1
nodegroup per AZ, and 3 AZs.

Example:

eksctl create nodegroup --name aws-deploy-test-ng01 --nodes 3 --nodes-min 3

--nodes-max 3 --node-volume-size 50 --cluster aws-deploy-test

--node-private-networking

--node-labels=zookeeper=deploy,broker=deploy,grafana=deploy,elasticsearch=deploy,obje

ct_store=deploy,distributed_db=deploy,default_agent=deploy,securestore=deploy,monitor

ing_server=deploy,infra-tsdb=deploy,thanos=deploy,agent1=deploy,northbound=deploy

--node-type r6i.xlarge --node-zones us-west-2b --managed

eksctl create nodegroup --name aws-deploy-test-ng02 --nodes 3 --nodes-min 3

--nodes-max 3 --node-volume-size 50 --cluster aws-deploy-test

--node-private-networking

--node-labels=zookeeper=deploy,broker=deploy,grafana=deploy,elasticsearch=deploy,obje

ct_store=deploy,distributed_db=deploy,default_agent=deploy,securestore=deploy,monitor

ing_server=deploy,infra-tsdb=deploy,thanos=deploy,agent1=deploy,northbound=deploy

--node-type r6i.xlarge --node-zones us-west-2c --managed

eksctl create nodegroup --name aws-deploy-test-ng03 --nodes 3 --nodes-min 3

--nodes-max 3 --node-volume-size 50 --cluster aws-deploy-test

--node-private-networking

--node-labels=zookeeper=deploy,broker=deploy,grafana=deploy,elasticsearch=deploy,obje

ct_store=deploy,distributed_db=deploy,default_agent=deploy,securestore=deploy,monitor

ing_server=deploy,infra-tsdb=deploy,thanos=deploy,agent1=deploy,northbound=deploy

--node-type r6i.xlarge --node-zones us-west-2d --managed

66

ATOM Deployment Guide

NOTE: Kindly wait until the required number of nodes are in ready state. You can check
the node status by running “kubectl get nodes”

❏ Create the IAM policy for gp3 volumes creation. Please refer to 5(c) in Prerequisites for
respective steps.

❏ Update Kubeconfig
aws eks --region <us-west-2> update-kubeconfig --name {cluster-name}
Cross check once by running “kubectl get svc --all-namespaces” and observe if
kubernetes services are running.

Deploying ATOM
After ensuring that the prerequisites described in the section “Prerequisites” are taken care of,
perform the following steps:

1. Login to your Ubuntu machine and connect to cluster and add node labels

a. Get existing cluster details and connect to it

“eksctl get cluster”

“aws eks update-kubeconfig --name {cluster-name} --region {region-name}”

2. Unzip the deployment-scripts folder, provided by Anuta, described in the section,

“Deployment scripts and files”.

3. Update wrapper.properties file accordingly in [deployment] section.

a. Cross verify if build number is set

b. Cross verify if deployment_type is set to “aws”

c. Update size to required value like “minimal” or “resilient”

d. Cross verify if image_pull is set to "quay"

e. Cross verify if organization is set to "release"

f. Set the cluster_name in the [aws-eks] section.

4. Update wrapper.properties file to set ELB configuration in [aws-eks] section

a. Choose ELB type - if public access to ATOM services is required, then set the

following parameters “external”. “internal” is default.

i. elb_atom_ui_sso - ELB for providing ATOM UI over SSO

ii. elb_atom_ui_direct - ELB for providing ATOM UI/rest API

iii. elb_atom_agent - ELB for remote agents to connect to ATOM cluster

iv. elb_atom_agent_apm - ELB for remote agents to send performance

metrics to ATOM cluster

v. elb_atom_agent_incluster - ELB for devices to communicate with agent if

the agent is running inside ATOM cluster

b. set north_bound_source_ranges according to your requirement. By default it will

allow all IPs.

eg: allowed_ip_range_atom_ui = “10.10.0.0/24,172.16.0.0/16”

67

ATOM Deployment Guide

i. allowed_ip_range_atom_ui_sso

ii. allowed_ip_range_atom_ui_direct

iii. allowed_ip_atom_agent

iv. allowed_ip_range_atom_agent_apm

v. allowed_ip_range_atom_agent_incluster

5. Set the permissions to the log file by running. “sudo touch /var/log/atom.log && sudo

chmod 777 /var/log/atom.log”

6. Modify accesskey,secretkey and service endpoint in ATOM/minio/values.yaml under

s3gateway section.

s3gateway:

enabled: s3gateway

replicas: 1

serviceEndpoint: "https://s3.{region}.amazonaws.com"

accessKey: "XXXXXXXXXX"

secretKey: "YYYYYYYYYYY"

7. Deploy ATOM by executing the following script

sudo python deploy_atom.py

Executing above steps will complete the ATOM deployment in AWS.
After deployment is completed, the URL’s to access the ATOM application can be fetched
by running

kubectl get svc -n atom

ATOM services are accessible via LoadBalancers.

A Site-to-Site VPN would be needed between the ATOM server on AWS and a remote ATOM
agent which has access to lab devices. Please refer to the section Distributed ATOM Agent
Deployment for deploying a Remote ATOM Agent.

ATOM System Manager
ATOM provides deployment summary of all Components through System Manager. System
Manager provides a high level view of all the components, number of instances, status &
management URLs for some of the components.

● Navigate to Administration> System Manager> Dashboard
● To access components like Grafana, Kibana etc. select that component and you can see

the Management URL at top right corner.

68

ATOM Deployment Guide

● To Check the functionality of ATOM and its involved components, select the top level
circle icon

● To Check the ATOM Components status like liveness and number of instances per each
ATOM components select the ATOM component as shown below.

69

ATOM Deployment Guide

Here on the right side we can see the number instances, refer below colour codings.
1. Green: it represent the Activeness of the component
2. Red: It represents the component is deployed and the required number of

instances set as zero.
3. Black: It represents the component is not deployed

● To Check the ATOM Infra Components status like liveness and number of instances per
each Infra components select the Infra component as shown below

● To view the same data in a tabular form select the toggle button as shown below. Here
also we can see the number instances per component, status and its management url if
applicable.

70

ATOM Deployment Guide

Post Installation
AWS Specific

Security Group updates
Following ports are required to be included in the security groups for device monitoring.
Select VPC under services and select Security Group under Security Section.
VPC – > Security → Security Group.

71

ATOM Deployment Guide

select a security group with the name eks-cluster-sg-{cluster-name}-xxxx and add following
ports to that security group.

- 21(TCP) – FTP from device to ATOM.
- 69(UDP) – TFTP from device to ATOM
- 162(UDP) – Sending SNMP traps from device to ATOM.
- 514(UDP) – Syslog port on device.

the source of the above security group will depend on the device range.

Custom DNS name(CNAME) creation
Once ATOM gets deployed, UI can be accessed at the default DNS names given to the load
balancers but those DNS names are not easy to remember and use. If you prefer to use a
custom DNS name instead of the default DNS name, you can associate a custom DNS
name(CNAME) for the load balancers.

Follow the below steps only if your domain is hosted in aws route53, otherwise follow the
instructions from your dns provider to add CNAME.
Steps to add CNAME in route53:

1. Fetch the haproxy-gw load balancer.
a. kubectl get svc -n atom | grep -i Load | grep haproxy-service-gw

2. Once haproxy LB value fetched, Select Route53 service in aws and select HostedZone
3. In Hosted Zones select one of the domain in which you want to create Record(CNAME

type)
4. Click on Create Record

a. In Record name provide the name from which you want to access ATOM UI.
b. Select CNAME in Record type.
c. In the value field , provide the haproxy-service-gw LB value.
d. Click on Create records.

Once CNAME was added, to make it work changes are required in keycloak UI, atom-frontend
and oauth2-proxy deployment.

Adding CNAME in keycloak Clients
Once CNAME was added in Route53, keycloak needs to be updated otherwise it would get
InvalidURL when trying to access ATOM UI using CNAME.
steps to follow:

1. Fetch haproxy-service-gw LB value using following command
a. kubectl get svc -n atom | grep -i Load | grep haproxy-service-gw

2. Access https://{LB}/auth in browser. and click on Administration Console.
3. Select the clients tab under the configure section and click on atom client ID.
4. In Settings, add CNAME value in Valid Redirect URLs and save it.

72

ATOM Deployment Guide

Deployment changes after adding CNAME
changes are required in atom-frontend and oauth2 deployment to make CNAME work.

1. Modify environment variables in oauth2-proxy deployment
Steps:

a. kubectl edit deployment oauth2-proxy -n atom
b. Replace LB value with CNAME values in following environment variables,

OAUTH2_PROXY_OIDC_ISSUER_URL and OAUTH2_PROXY_EXTRA_JWT_ISSUERS

Before CNAME:
env:

-name: OAUTH2_PROXY_OIDC_ISSUER_URL
value:

https://a8086360358f5424594bad66709c2102-0d723dabfde026a1.elb.us-west
-2.amazonaws.com/auth/key/realms

After CNAME:
env:

- name: OAUTH2_PROXY_OIDC_ISSUER_URL
value: https://iam-testing-atom.cloud.net/auth/key/realms

2. Modify environment variables in atom-frontend deployment
Steps:

a. kubectl edit deployment atom-frontend -n atom
b. Replace LB value with CNAME value in env variable KEYCLOAK_URL

73

https://a8086360358f5424594bad66709c2102-0d723dabfde026a1.elb.us-west-2.amazonaws.com/auth/key/realms
https://a8086360358f5424594bad66709c2102-0d723dabfde026a1.elb.us-west-2.amazonaws.com/auth/key/realms

ATOM Deployment Guide

Once deployment is successful, you can access the individual microservices running on different
nodes of the Kubernetes cluster. Microservices can be accessed via System Manager Dashboard
or using access details either via SSO or node-port. For detailed SSO information refer to section
ATOM Single Sign-On

Name of the service Description How to access it?

Kubernetes
Dashboard

Access for Kubernetes dashboard using
SSO. Not available for AWS or GKE

https://<master-ip>/k8s/

ATOM

Local deployment: Login URL of ATOM UI
& SSO based is via master IP
Cloud deployment: Kgin URL of ATOM UI
via LB of infra-web-proxy service & SSO
is via LB of oauth2-proxy service

https://<master-ip>:30443 (for local users)

https://<master-ip>/ (for SSO users)

https://<FQDN> (for cloud users)

Grafana
Service which helps us in monitoring
infrastructure health using heapster and
time series database.

https://<master-ip>/grafana/ (for SSO users)

https://<FQDN>/grafana (for cloud users)

Kibana
Service which helps us in log monitoring

and analytics

https://<master-ip>/kibana/ (for SSO users)

https://<FQDN>/kibana (for cloud users)

where master_ip is the IP address of the master node and its VIP ip in the case of HA masters setup.

To observe the IP addresses assigned to any of the microservices that could be deployed either
on the master or the worker nodes, executing the following commands can help:

kubectl get nodes
Execute this command to view the created nodes

kubectl get pods -n atom
Execute this command to get the microservices deployed on the node

kubectl describe pod <pod_name> -n atom
#Execute this command to view the details of the microservice

kubectl get svc -n atom
#Execute this command to view the services

NOTE: If deployment is done in a different namespace, provide -n <namespace> in the
above commands.

ATOM Single Sign-On (SSO)
ATOM Single Sign-On supports following Identity Providers (IdPs).

● Keycloak - Keycloak is an open source identity provider and runs within the ATOM
cluster.

74

https://app
https://app
https://app

ATOM Deployment Guide

For Log in with Atom, default user/password: admin/Secret@123 can be used.
Additional users can be created by login to the atom authentication manager ui
https://<master-ip>/auth.

● Google - Please go to section Google Idp of this guide to configure the integration with
Google SSO.

ATOM SSO support is enabled by default with the Keycloak as Identity Provider running locally in

the ATOM cluster. Additional steps are needed to configure integration with different IdPs such

as Google.

Default <master_ip> is configured during ATOM setup with self signed certificates. If a specific

domain is desired, then users can provide a FQDN address for the master IP of K8s cluster and

an SSL certificate associated with the same FQDN in PEM format.

Below are the steps listed for setting up Google SSO Integration with ATOM.

Google IdP
1. For Google based SSO logins, create callback urls in Google cloud platform.

● Login to Google cloud platform. In the project Dashboard center pane, choose

APIs & Services tab.

● In the left navigation pane, choose “Credentials”

● Click the create credentials button. Select OAuth client ID.

75

ATOM Deployment Guide

● Select application type as web application

76

ATOM Deployment Guide

● Give name, add callback urls like below under Authorized redirect Urls and click

on the create button.after that copy client id and secrets.

77

ATOM Deployment Guide

● Login to keycloak and update Identity provider details client id and client secret

● Now we can login to the atom application using google credentials.

ATOM System Alerts
Below are a list of ATOM System Alerts and scenarios when they can be generated, Actions

which can be taken.

System Alert Name Troubleshooting Steps

NodeHighMemory

● Login to Grafana (https://<Master IP>/grafana/)

● Select Cluster Health dashboard

● Select the node which has a HighMemory alert and check which are

the pods consuming more memory in that node.

NodeHighCPU

● Login to Grafana (https://.<Master IP>/grafana/)

● Select Cluster Health dashboard

● Select the node which has HighCPU alert and check which are the

pods consuming more CPU.

78

https://app
https://app

ATOM Deployment Guide

NodeHighDiskUsage

● Login to Grafana.

● Select Cluster Monitoring Dashboard.

● Select the node which has High Disk usage and login to that node.

○ Login to Master VM

○ Find the IP of the node by following command.

■ kubectl describe node <node-name> | grep IP. you

will get the IP of that node and then you can login to

that node by using ssh.

● Check which folders are consuming Disk in /data folder by using du

-h --max-depth=1 on that particular node.

● Run purge jobs in atom to cleanup the disk.

● If /data folder is consuming less then what shown in grafana then

check the disk usage by following command

○ df -h which will give full disk utilization.

(/dev/mapper/centos-root is the filesystem we need to

check)

NodeFault

This alert can be received for the following reasons.

● MemoryPressure: if pressure exists on the node memory (if the

node memory is low)

● PIDPressure: if pressure exists on the processes (if there are too

many processes on the node)

● DiskPressure: if pressure exists on the disk size (if the disk capacity is

low)

● NetworkUnavailable: if the network for the node is not correctly

configured.

If you receive this Alert follow the steps below.

● Note the fault condition and node

● To get the list and status of nodes - kubectl get nodes.

● To check the fault condition type - kubectl describe <node-name>.

In the output you will see the reason for the failure in conditions.

Can be due to DiskPressure/Memory etc.

InstanceDown
This alert will come when the Node/VM is not reachable or down. If you

receive this Alert, intimate to Admin.

PodNotReady

Pod can be in NotReady for a number of reasons. To get an overview of all

the pods in ATOM execute kubectl get pods -n atom. To find out the reason

why the specific pod was not ready execute

kubectl describe pod <pod-name> -n atom

Following can be the reasons for PodNotReady

● Taints on Node: If taints were added on node and pod spec doesn’t

have tolerations w.r.t to taints on node then Pod will be in pending

state.

79

ATOM Deployment Guide

● Insufficient Resources: If there are resource crunch in the cluster or

required resources to deploy the pod was not available on the

cluster then the pod will be in pending state.

● Node Selector: If the pod spec has nodeselector then for the pod to

be eligible to run on a node, then node must have each of the

indicated key-value pairs which is mentioned in nodeselector as

labels.

● PV Claim: If scheduler doesn’t find node labels to deploy PV then

pod will be in pending status with error “pod has unbound

immediate PersistentVolumeClaims”.

● InitStuck: If a pod is stuck at init phase then subsequent

init-containers are not ready. This could be because of the

dependent pod being down. Ex: schema-repo dependent on broker.

ContainerNotUp

Below can be possible reasons for Container not being up.

● Crashloopbackoff

● ImagePullbackoff

● Application inside the container was not up.

When this Alert is generated follow the steps below.

● Note the reason shown for the Container not up and pod-name

● Login to the Kibana (https://<Master IP>/kibana/)

● Filter by pod name

● Verify the logs and find if any error messages are shown.

ContainerTerminated

Containers can be killed for a number of reasons like OutofMemory

(OOMKilled), Eviction, DiskPressure etc..

When this Alert is generated follow the steps below.

● Note the reason shown for the Container termination and pod-name

● Login to the Kibana (https://<Master IP>/kibana/)

● Examine kubernetes logs - use the query ‘pod-name : “eventrouter’

and select the appropriate time range, look for related logs.

Additional filtering criteria like name of the pod can be used in the

query.

● Look for errors or warnings in Pod logs - Filter by pod name. Ex-

‘“pod-name: “atom-core” and (error or warning or warn)’

ReplicasMismatch

This alert can be received when one or more pods are

● Not ready due to crashed application internally

● In pending state due to missing resource

● In failed container state

When this Alert is generated follow the steps below

● Check the cause using kubectl logs <pod> -n atom and kubectl

describe <pod> -n atom

80

https://app
https://app

ATOM Deployment Guide

ATOM System Alerts by default can be observed in ATOM > Assurance > Alerts. To enable those alerts to

come into Slack as well, make sure to update the webhook url of the slack channel in config map of

infra-tsdb-monitoring-alertmanager by following below steps:

● Login to the Master IP through ssh and execute below command.

kubectl edit configmap infra-tsdb-monitoring-alertmanager -n atom

● Update your slack webhook url in slack_api_url option.

● As intention is to have alerts observed in both slack and atom ui, make sure receiver field value

is “default-receiver”

● group_by: It is useful for alert deduplication and repeatability or stacking the alerts together.

○ [...] treats every label name and value as different, don’t change this unless you want

different behavior.

■ For example: if you keep [device] as group_by attribute then each device alert

will be notified only one irrespective of its type, severity etc..

● Tune below timers based on your requirement, however default values are sufficient to get all

the notifications.

○ group_wait : How long to wait to buffer alerts of the same group before sending a

notification initially. Usually, it will o to few minutes

○ group_interval :How long to wait before sending an alert that has been added to a

group for which there has already been a notification. Usually, it is 5 or more minutes

○ repeat_interval : How long to wait before re-sending a given alert that has already been

sent in a notification. Usually, it depends on the SLA’s to acknowledge and resolve the

issues in your environment. Don’t keep less than 1 hour, as it chokes the system with too

many duplicate notifications.

Note: Please do understand each option before changing from default to any other values as it

impacts the throttling, alert deduplication.

81

ATOM Deployment Guide

82

ATOM Deployment Guide

Troubleshooting & FAQ
Following can be some issues seen during deployment.

Issue Troubleshooting Steps

ATOM UI page is not
reachable

1. Check if all the VM nodes in Esxi are in powered-on state
2. Login to the Master and Check if K8s cluster shows all

Nodes are in READY state
3. Login to Master and Check if all the ATOM pods are in

Status:Running state

ATOM UI page shows:
503 Service Unavailable

1. Login to Master and Check if all the ATOM pods are in
Status:Running state.

2. Check if all the Pods are showing READY 1/1, 2/2, 3/3 as
applicable based on containers it holds.

ATOM deployment on KVM,
where low CPU and I/O
performance can impact

Cross check the CPU pinning if required and set the I/O
mode to “native” in the node’s xml file

Overlapping IP address issue
during ATOM deployment.

Calico CNI from Anuta defaults to 10.200.0.0/16 for the pods
(containers). So one needs to cross check their lab
networking before forming a kubernetes cluster.

Accessibility test between
Remote Agent and ATOM
Server over required
nodePorts

To check the accessibility of databases running on ATOM
Server from remote agent, one can run curl to one of the
endpoints(nodePorts) like “curl -v http://<ATOM node
IP>:<nodePort>” E.g: curl -v http://172.16.100.10:30081

Service Loadbalancers are in
pending state

Check if metallb pods are running and active. If they are
missing, then install the metallb helm chart. Prior to
installation, set the VIP’s at values.yaml file

List of useful commands
Some of the commands that will be useful for debugging and troubleshooting.

Command Description

helm create {package_name} To create a directory

helm install {package_name} -n {name of app} Deploy the application

helm ls -n atom To check deployment status

83

ATOM Deployment Guide

Kubectl get deployments -n atom To check deployments

Kubectl get pods -n atom To check pod status

helm upgrade {releasename} {package-name} -n
atom

deployment update with new changes.

helm history {package-name} -n atom To view the history

helm uninstall {package_name} -n atom To delete the package

helm rollback {package-name} version -n atom Rollback the package

Cleanup of Deployment
By keeping the Kubernetes cluster, If ATOM Server deployment needs to be deleted for
recreating it, then a proper cleanup needs to be done by following the below steps on the
Kubernetes master.

1. Execute below cmd
helm uninstall `helm ls -n atom | awk 'NR>1 {{print $1}}'` -n atom

2. From scripts folder of atom-deployment zip, execute 'sh teardown-pv-pvc.sh'
3. From scripts folder of atom-deployment zip, execute 'sh script_delete.sh'
4. Check if all the deployments got deleted or not by executing

● kubectl get deployments -n atom
● kubectl get statefulsets -n atom
● kubectl get pods -n atom
● helm ls -n atom
● kubectl get pv,pvc -n atom

5. Once all cleanup is done, execute 'sudo python deploy_atom.py' from Master node.

Guidance on KVM
Make sure you have the qcow images from Anuta or convert from OVA like below.

tar -xvf centos_1_21_300_linstor_0122.ova

Convert the vmdk to qcow2
sudo qemu-img convert -f vmdk -O qcow2 centos_1_21_300_linstor_0122-disk1.vmdk
centos_1_21_300_linstor_0122-disk1.qcow2

sudo qemu-img convert -f vmdk -O qcow2 centos_1_21_300_linstor_0122-disk2.vmdk
centos_1_21_300_linstor_0122-disk2.qcow2

If you are working on a remote KVM machine without a GUI tool like vm manager, follow below
steps

● Dedicated Master node

84

ATOM Deployment Guide

virt-install --name "<VM_NAME>" --memory <RAM_IN_MB> --vcpus <CPU_COUNT> --disk
<FULL_PATH_OF_MASTER_QCOW2_IMAGE>,bus=virtio --network=<BRIDGE_NAME_AND_TYPE>
--vnc --import --nographics --os-type=linux --os-variant=centos7.0

ex:

virt-install --name "master" --memory 8192 --vcpus 4 --disk
/home/anuta/Downloads/master/centos_1_21_40.qcow2,bus=virtio
--network=bridge:virbr0,model=virtio --vnc --import --nographics
--os-type=linux --os-variant=centos7.0

● For each Shared Master or Worker nodes with linstor disks
virt-install --name "<VM_NAME>" --memory <RAM_IN_MB> --vcpus <CPU_COUNT> --disk
<DISK1_QCOW2_IMAGE>,bus=virtio --disk <DISK2_QCOW2_IMAGE>,bus=virtio
--network=<BRIDGE_NAME_AND_TYPE> --vnc --import --nographics --os-type=linux
--os-variant=centos7.0

ex:

virt-install --name "worker1" --memory 32768 --vcpus 4 --disk
/home/anuta/Downloads/worker1/centos_1_21_300_linstor_1221-disk1.qcow2,bus=virt
io --disk
/home/anuta/Downloads/worker1/centos_1_21_300_linstor_1221-disk2.qcow2,bus=virt
io --network=bridge:virbr0,model=virtio --vnc --import --nographics
--os-type=linux --os-variant=centos7.0

In the case of Node having Multiple disks, make sure that
centos_1_21_300_linstor_1221-disk1.qcow2 is used for booting the VM. For this the disks
need to be mapped appropriately to the correct name.

Boot disk always maps to centos_1_21_300_linstor_1221-disk1.qcow2 which maps to vda,
while Data disk always maps to centos_1_21_300_linstor_1221-disk2.qcow2 which maps to
vdb. If we still find that the VM does not boot appropriately a quick troubleshooting step would
be to try and boot from the other disk.

Migration of Storage
Please follow the following steps to migrate Nodes from HDD to SSD or other suitable storage
options.

STEP-1 ATOM prerequisites before Data store migration:
1. Put ATOM In maintenance mode.

Navigate to Administration > System Manager > Dashboard. Enable
“Maintenance” option to put the system in maintenance mode.

2. Shutdown all nodes (VMs) that need to be migrated

STEP-2 ATOM prerequisites before Data store migration:
1. Migrate VM and change the Data Storage - for example, nodes running on esxi

hosts can be migrated using vSphere.
2. Power on the Nodes

85

ATOM Deployment Guide

STEP-3 Post VM Migration Steps in ATOM:
1. Remove the maintenance mode.

Navigate to Administration > System Manager > Dashboard. Disable
“Maintenance” option to clear the system from maintenance mode.

Following Example shows STEP-2 in a VMware based virtualization environment

1. Right click on Node(VM) and select migrate option.

2. Select the migration type.

86

ATOM Deployment Guide

3. Select the storage type.

4. Click on the Next and Finish button.

Steps to check logs in kibana
1. Open the kibana url , http://<master_ip>/kibana/
2. Create index pattern by going to Management/Index patterns/Create index pattern

3. Go to Discover and in the search box , search with pod name as shown below
pod-name:”<pod-name>”, to check logs for specific pod

87

http://app
https://app.172.16.17.171.nip.io:32443/kibana/app/kibana#/management
https://app.172.16.17.171.nip.io:32443/kibana/app/kibana#/management/kibana/index_patterns
https://app.172.16.17.171.nip.io:32443/kibana/app/kibana#/management/kibana/index_pattern

ATOM Deployment Guide

4. Some useful queries to get K8s events and K8s logs
For atom core pod events

For K8s pod logs

88

ATOM Deployment Guide

Steps to check load distribution in kafka
for config parser
Login to one of the brokers and execute below commands.

export KAFKA_JVM_PERFORMANCE_OPTS=""

kafka-consumer-groups --bootstrap-server localhost:9092 --describe
--group config-parser

It shows all partition details along with consumer and lag details

Logs for deployment failures
From the master node execute getlogsfrompod.sh shell script. The script is available in
the scripts folder of atom-deployment zip.

cd scripts
sh getlogsfrompod.sh

● This script creates a .tgz in /tmp folder.
● Also collect /var/log/atom.log from master node.

Appendix

AWS Connectivity Options
Connectivity between DC and AWS:

AWS provides different options to connect the on-premises site to aws. We recommend

the customer to follow the existing practice if there is one setup already. Here is the aws

reference doc to consider different possible options.

https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/network-to-am

azon-vpc-connectivity-options.html

Connectivity between different VPCs:

If the deployment machine is in AWS, customers must establish the connection between

the deployment machine and eks cluster. Since the deployment machine is recommended to be

a different VPC than eks cluster, explicitly configuration steps are required to establish the

connectivity between two VPC.

89

https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/network-to-amazon-vpc-connectivity-options.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/network-to-amazon-vpc-connectivity-options.html

ATOM Deployment Guide

Using Transit GW:

Transit GW can be used in hub and spoke mode to attach both the VPCs to transit

GW and add routes to respective route tables of private subnets in each VPC pointing to transit

GW. Please refer to the below aws documentation about transit gateway configurations.

https://docs.aws.amazon.com/vpc/latest/tgw/tgw-vpc-attachments.html

https://docs.aws.amazon.com/vpc/latest/tgw/tgw-route-tables.html

Custom SSL Certificate for ATOM
To apply a custom SSL certificate or a CA signed to the ATOM we need to follow the below steps.

In case of cloud:

1. Copy the certificate and private key to the jumphost

In case of on prem:

1. Login to the K8s master node as atom user

2. Copy the certificate and private key to the k8s master node

Execute following steps.

1. Delete existing secrets

kubectl delete secret -n atom atom-certificate

kubectl delete secret -n kube-system tls-secret(only for on-prem)

2. Create new secrets using the new certificate and private key.

kubectl create secret tls atom-certificate -n atom --cert=<certificate-filename>

--key=<private-key-filename> --dry-run -o yaml >cert-atom.yaml

kubectl create secret tls tls-secret -n kube-system --cert=<certificate-filename>

--key=<private-key-filename> --dry-run -o yaml >cert-dashboard.yaml

NOTE: Replace <certificate-filename> and <private-key-filename> with your files.

3. Apply the secrets

kubectl create -f cert-atom.yaml -f cert-dashboard.yaml

4. Restart the following pods using kubectl delete pod -n atom <pod name>

a. infra-web-proxy (If certificate change is intended on direct ATOM UI)

b. keycloak and oauth2_proxy (If certificate change is intended for SSO component)

90

https://docs.aws.amazon.com/vpc/latest/tgw/tgw-vpc-attachments.html
https://docs.aws.amazon.com/vpc/latest/tgw/tgw-route-tables.html

ATOM Deployment Guide

File Server for ATOM ZTP

AWS EC2
1. Create CentOS 7 EC2 machine

a. Goto AWS EC2 console
b. Select Launch Instance, select CentOS 7 AMI from the community image
c. Select the size as t2.medium
d. Select the VPC and subnet that has access to the DHCP server of the required

LAB(Target machine of PXE booting and ATOM). Public access can be selected
based on access type and need.

e. Next select the storage of about 100GB
f. Next create or select the Security group which provides following access

i. SSH on TCP/22
ii. TFTP on UDP/69

iii. HTTP on TCP/80
iv. ICMP ping(optional)

g. Create or select the SSH keypair for accessing the VM
h. Launch the instance

2. SSH using the private key and run the following command
a. sudo yum install unzip -y

3. Copy the zip file shared by Anuta into the fileserver host and the extract the file using
unzip <FILENAME>.zip

4. Goto the unzipped folder and run sudo python pxe_environment.py -a <atom VIP>
5. Above command should bootstrap the node with required pxeboot files and default

structure for the same. Note: The default configuration should be overwritten to use.
6. Verify the following files for required values

a. Update the kickstart file for url and atom.tgz links under
/var/www/html/pxe/ks/centos7-ks.cfg and make sure that the URL has the
connectivity for the target PXE machine.

i. If kickstart device is not default and requires specific NIC to be
mentioned, update the --device=NIC_NAME for the network line

b. Update the PXE config file under /var/lib/tftpboot/pxelinux.cfg/default
i. If kickstart device is not default and requires specific NIC to be

mentioned, add ksdevice=NIC_NAME at the end of append line
c. Goto the HTTP file server base path using cd /var/www/html/pxe

i. Extract the default atom.tgz using “sudo tar -xf atom.tgz”
ii. Update the ATOM URL inside using “sudo vi

atom/release/atom.properties”
iii. Remove the old atom.tgz using “sudo rm -f atom.tgz”
iv. Recreate the atom.tgz file using “sudo tar -cf atom.tgz atom”

91

ATOM Deployment Guide

ON-PREM VM

● Create a CentOS 7 VM on the VMware or the KVM
○ Provide the specs as 4cpu, 8GB ram and 100GB of storage
○ Provide the static IP and add networking which has connectivity to below ports

between ATOM and Fileserver
■ SSH on TCP/22
■ TFTP on UDP/69
■ HTTP on TCP/80
■ ICMP ping(optional)

● SSH using the private key and run the following command
○ sudo yum install unzip -y

● Copy the zip file shared by Anuta into the fileserver host and the extract the file using
unzip <FILENAME>.zip

● Goto the unzipped folder(pxeboot) using “cd pxeboot” and run sudo python
pxe_environment.py -a <atom VIP>

● Above command should bootstrap the node with required pxeboot files and default
structure for the same. Note: The default configuration should be overwritten to use.

● Verify the following files for required values
○ Update the kickstart file for url and atom.tgz links under

/var/www/html/pxe/ks/centos7-ks.cfg and make sure that the URL has the
connectivity for the target PXE machine.

○ If kickstart device is not default and requires specific NIC to be mentioned,
update the --device=NIC_NAME for the network line

○ Update the PXE config file under /var/lib/tftpboot/pxelinux.cfg/default
■ If kickstart device is not default and requires specific NIC to be

mentioned, add ksdevice=NIC_NAME at the end of append line
○ Goto the HTTP file server base path using cd /var/www/html/pxe

■ Extract the default atom.tgz using “sudo tar -xf atom.tgz”
■ Update the ATOM URL inside using “sudo vi

atom/release/atom.properties”
■ Remove the old atom.tgz using “sudo rm -f atom.tgz”
■ Recreate the atom.tgz file using “sudo tar -cf atom.tgz atom”

92

